首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
An experimental study is conducted to determine the detonation characteristics of 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) particles dispersed in a gaseous fuel air mixture in a vertical detonation tube with an inner diameter of 200 mm and a height of 5400 mm. Experiments are performed in both ethylene–air mixtures and RDX–ethylene–air hybrid mixtures. The detonation front pressure and velocity are measured with six pressure transducers along the detonation tube. The results show that the addition of RDX assists 4.0 vol.% ethylene–air mixtures in achieving detonation. The detonation front pressure increases noticeably with dust concentration up to \(474\hbox { g/m}^{3}\) in the RDX–ethylene–air hybrid mixtures, but the velocity only increases slightly. The cellular structures of RDX–ethylene–air hybrid mixtures and ethylene–air mixtures were obtained with the use of smoked foils and exhibit irregular structures. It is found that the measured cell size has a U-shaped curve with respect to RDX concentration.  相似文献   

3.
4.
The influence of transverse concentration gradients on detonation propagation in \(\hbox {H}_2\)–air mixtures is investigated experimentally in a wide parameter range. Detonation fronts are characterized by means of high-speed shadowgraphy, OH* imaging, pressure measurements, and soot foils. Steep concentration gradients at low average \(\hbox {H}_2\) concentrations lead to single-headed detonations. A maximum velocity deficit compared to the Chapman–Jouguet velocity of 9 % is observed. Significant amounts of mixture seem to be consumed by turbulent deflagration behind the leading detonation. Wall pressure measurements show high local pressure peaks due to strong transverse waves caused by the concentration gradients. Higher average \(\hbox {H}_2\) concentrations or weaker gradients allow for multi-headed detonation propagation.  相似文献   

5.
Detonation in ducts is usually studied assuming adiabatic walls because of the high kinetic energy due to the incoming flow being supersonic. In the present work, numerical simulations of deflagration-to-detonation transition (DDT) using a detailed chemical reaction model are performed under adiabatic and isothermal boundary conditions in a tube with no-slip walls. The results show a local explosion driving DDT, which occurs near the tube wall in the case of an adiabatic wall, but close to the flame front in the case of an isothermal wall. Furthermore, to examine the effects of a turbulent boundary layer, a simulation using the Baldwin–Lomax turbulence model is carried out. In the case of the isothermal wall, there is again a local explosion near the tube wall, which leads to detonation. In summary, the present study confirms that the boundary conditions affect the transition to detonation and that the boundary layer is a key component of DDT.  相似文献   

6.
The rheological behavior of polymethylmethacrylate (PMMA) particles suspensions in glycerine–water mixtures has been investigated by means of steady and dynamic rheometry in this work. The shear rheology of these suspensions demonstrates a strong shear thickening behavior. The variations of shear viscosity with the volume fraction and ratios of glycerine to water are discussed. The effect of volume fraction can be qualitatively explained using a clustering mechanism, which attributes the phenomena to the formation of temporary, hydrodynamic clusters. The influence of interactions between glycerine–water mixtures and PMMA particles on shear thickening is investigated by varying the ratio of glycerine to water. In addition, the reversible and thixotropic properties of suspensions of PMMA dispersed in glycerine–water (3:1) mixtures are also investigated, and the results demonstrate the excellent reversible and thixotropic properties of PMMA particle suspensions.  相似文献   

7.
Existence conditions are investigated for the unidirectional flows of binary mixtures describable by the equations of motion in the Oberbeck–Boussinesq approximation with account for the thermodiffusion effect. Possible solutions are classified, known and novel classes of exact solutions being distinguished. For the solutions obtained different formulations of boundary-value problems are proposed. Flows between two rigid walls with given heat distribution laws are described.  相似文献   

8.
A mathematical model, numerical simulations and stability and flow regime maps corresponding to severe slugging in pipeline–riser systems, are presented. In the simulations air and water were used as flowing fluids. The mathematical model considers continuity equations for liquid and gas phases, with a simplified momentum equation for the mixture, neglecting inertia. A drift-flux model, evaluated for the local conditions in the riser, is used as a closure law. The developed model predicts the location of the liquid accumulation front in the pipeline and the liquid level in the riser, so it is possible to determine which type of severe slugging occurs in the system. The numerical procedure is convergent for different nodalizations. A comparison is made with experimental results corresponding to a catenary riser, showing very good results for slugging cycle and stability and flow regime maps.  相似文献   

9.
This paper presents results from seven experimental facilities on the co-current flow of air and water in downward sloping pipes. As a function of the air flow rate, pipe diameter and pipe slope, the required water discharge to prevent air accumulation was determined. In case the water discharge was less than the required water discharge, the air accumulation and additional gas pocket head loss were measured. Results show that volumetric air discharge as small as 0.1% of the water discharge accumulate in a downward sloping section. The experimental data cover all four flow regimes of water-driven air transport: stratified, blow-back, plug and dispersed bubble flow. The analysis of the experimental results shows that different dimensionless numbers characterise certain flow regimes. The pipe Froude number determines the transition from blow-back to plug flow. The gas pocket head loss in the blow-back flow regime follows a pipe Weber number scaling. A numerical model for the prediction of the air discharge as a function of the relevant system parameters is proposed. The novelty of this paper is the presentation of experimental data and a numerical model that cover all flow regimes on air transport by flowing water in downward inclined pipes.  相似文献   

10.
11.
This paper describes a new way of generating pulsed air–water jet by entraining and mixing air into the cavity of a pulsed water jet nozzle. Based on the theory of hydro-acoustics and fluid dynamics, a theoretical model which describes the frequency characteristic of the pulsed air–water jet is outlined aimed at gaining a better understanding of this nozzle for generating pulses. The calculated result indicates that as the air hold-up increases, the jet oscillation frequency has an abrupt decrease firstly, and then reaches a minimum gradually at α (air hold-up)=0.5, finally it gets increased slightly. Furthermore, a vibration test was conducted to validate the present theoretical result. By this way, the jet oscillation frequency can be obtained by analyzing the vibration acceleration of the equal strength beam affected by the jet impinging. Thereby, it is found that the experimental result shows similar trend with the prediction of the present model. Also, the relationship between vibration acceleration and cavity length for the pulsed water jet follows a similar tendency in accord with the pulsed air–water jet, i.e. there exists a maximum for each curve and the maximum occurs at the ratio of L/d1 (the ratio of cavity length and upstream nozzle diameter) =2.5 and 2.2, respectively. In addition, experimental results on specimens impinged by the pulsed water jet and pulsed air–water jet show that the erosion depth increases slightly with air addition within a certain range of cavity length. Further, this behavior is very close to the vibration test results. As for erosion volume, the air entrained into the cavity significantly affects the material removal rate.  相似文献   

12.
Liquid fuel with sufficient vapor proportion at micron scale is essentially required to increase specific energy density and reduce volume requirements for application of pulse detonation engine. For JP-8, the fully vaporized temperature ranges from 380 to 410 K. In this study, the fuel vapor with oxygen is not enough to induce the reaction and leads to failure of detonation initiation at the initial temperature of 373 K. Condensed fuel was also observed on the bottom of detonation tube. At 393 K, the detonation wave was successfully generated even though a portion of fuel was in a liquid state. The deflagration-to-detonation run-up distance and the pressure trace at fully vaporized conditions, in which the initial temperatures were at 413, 433, and 453 K, were similar to those of gaseous mixtures, such as propane–oxygen mixture.  相似文献   

13.
In this work, the influence of surfactants on air–water flow was studied by performing experiments in a 12 metre long, 50 mm inner diameter, vertical pipe at ambient conditions. High-speed visualisation of the flow shows that the morphology of the air–water interface determines the formation of foam. The foam subsequently alters the flow morphology significantly. In annular flow, the foam suppresses the roll waves, and a foamy crest is formed on the ripple waves. In the churn flow regime, the flooding waves and the downwards motion of the liquid film are suppressed by the foam. The foam is transported in foam waves moving upwards superposed on an almost stagnant foam substrate at the pipe wall. Foam thus effectively reduces the superficial gas velocity at which the transition from annular to churn flow occurs. These experiments make more clear how surfactants can postpone liquid loading in vertical pipes, such as in gas wells.  相似文献   

14.
15.
This numerical study describes the eddy emergence and transformations in a slow steady axisymmetric air–water flow, driven by a rotating top disk in a vertical conical container. As water height \(H_{\mathrm{w}}\) and cone half-angle \(\beta \) vary, numerous flow metamorphoses occur. They are investigated for \(\beta =30^{\circ }, 45^{\circ }\), and \(60^{\circ }\). For small \(H_{\mathrm{w}}\), the air flow is multi-cellular with clockwise meridional circulation near the disk. The air flow becomes one cellular as \(H_{\mathrm{w}}\) exceeds a threshold depending on \(\beta \). For all \(\beta \), the water flow has an unbounded number of eddies whose size and strength diminish as the cone apex is approached. As the water level becomes close to the disk, the outmost water eddy with clockwise meridional circulation expands, reaches the interface, and induces a thin layer with anticlockwise circulation in the air. Then this layer expands and occupies the entire air domain. The physical reasons for the flow transformations are provided. The results are of fundamental interest and can be relevant for aerial bioreactors.  相似文献   

16.
A comparative analysis of a wide range of air–water flow properties was conducted for two types of phase-detection intrusive probes including fiber-optical and conductivity probes. Experiments were conducted on a stepped spillway model for a skimming flow discharge q = 0.478 m2/s and for Re = 4.7 105 in a flow region just downstream of the inception point of free-surface aeration and in the fully developed flow region. The comparison of a large number of key air–water flow properties showed a very close agreement for the two sensor types including void fraction, interfacial velocity and equivalent clear water flow depth enabling a direct comparison of past and future data collected with either phase-detection probe type. Minor differences were observed in terms of chord sizes, clustered properties and interparticle arrival times linked with the slightly smaller sensor size of the fiber-optical probe. The in-line positioning of the leading and trailing tips of the fiber-optical probe affected the trailing tip properties resulting in elevated turbulence intensities. An optimum dual-tip phase-detection probe design should consist of small probe tips positioned side-by-side.  相似文献   

17.
A detailed simulation of the ignition process and premixed flames propagation, taking into account molecular transport, chemical reaction, thermodynamics and convection, is built by making use of the implicit finite difference scheme with the help of the Tridiagonal Matrix Algorithm. The velocity of chemical reaction is expressed by means of Arrhenius form of first order in both fuel and oxygen. The main objective of this work is to define numerically in two cases, u=0.1 m/s and u=0.4 m/s, the ignition temperature of the methane–air mixture with different air excess coefficients in the mixture. In addition, the effect of the thickness of the region ignition and of ignition location on the transient behavior of the flame was studied.  相似文献   

18.
The condensation heat transfer of the ethanol–water mixtures on the vertical tube over a wide range of ethanol concentrations was investigated. The condensation curves of the heat flux and the heat transfer coefficients revealed nonlinear characteristics and had peak values, with respect to the change of the vapor-to-surface temperature difference. This characteristic applies to all ethanol concentrations under all experimental conditions. With the decrease of the ethanol concentrations, the condensation heat transfer coefficient increased notably, especially when the ethanol concentration was very low. The maximum heat transfer coefficient of the vapor mixtures increased to 9 times as compared with that of pure steam at ethanol vapor mass concentration of 1%. With the increase of the ethanol concentrations, the condensation heat transfer coefficient decreased accordingly. When the ethanol concentration reached 50%, the heat transfer coefficient was smaller than that of the pure steam.  相似文献   

19.
20.
Detonation experiments are conducted in a 52 \(\hbox {mm}\) square channel with an ethylene–air gaseous mixture with dispersed liquid water droplets. The tests were conducted with a fuel–air equivalence ratio ranging from 0.9 to 1.1 at atmospheric pressure. An ultrasonic atomizer generates a polydisperse liquid water spray with droplet diameters of 8.5–12 \(\upmu \hbox {m}\), yielding an effective density of 100–120 \(\hbox {g}/\hbox {m}^{3}\). Pressure signals from seven transducers and cellular structure are recorded for each test. The detonation structure in the two-phase mixture exhibits a gaseous-like behaviour. The pressure profile in the expansion fan is not affected by the addition of water. A small detonation velocity deficit of up to 5 % was measured. However, the investigation highlights a dramatic increase in the cell size (\(\lambda \)) associated with the increase in the liquid water mass fraction in the two-phase mixture. The detonation structure evolves from a multi-cell to a half-cell mode. The analysis of the decay of the post-shock pressure fluctuations reveals that the ratio of the hydrodynamic thickness over the cell size (\(x_{{\mathrm {HT}}}/{\lambda }\)) remains quite constant, between 5 and 7. A slight decrease of this ratio is observed as the liquid water mass fraction is increased, or the ethylene–air mixture is made leaner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号