首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Historically, single-metal organometallic species such as organolithium compounds have been the reagents of choice in synthetic organic chemistry for performing deprotonation reactions. Over the past few years, a complementary new class of metalating agents has started to emerge. Owing to a variable central metal (magnesium, zinc, or aluminum), variable ligands (both in their nature and number), and a variable second metallic center (an alkali metal such as lithium or sodium), "ate" complexes are highly versatile bases that exhibit a synergic chemistry which cannot be replicated by the homometallic magnesium, zinc, or aluminum compounds on their own. Deprotonation accomplished by using these organometallic ate complexes has opened up new perspectives in organic chemistry with unprecedented reactivities and sometimes unusual and unpredictable regioselectivities.  相似文献   

2.
Guo SP  You TS  Jung YH  Bobev S 《Inorganic chemistry》2012,51(12):6821-6829
Eight new rare-earth metal-lithium-germanides belonging to the [REGe(2)](n)[RELi(2)Ge](m) homologous series have been synthesized and structurally characterized by single-crystal X-ray diffraction. The structures of the title compounds can be rationalized as linear intergrowths of imaginary RELi(2)Ge (MgAl(2)Cu structure type) and REGe(2) (AlB(2) structure type) slabs. The compounds with general formula RE(7)Li(8)Ge(10) (RE = La-Nd, Sm), i.e., [REGe(2)](3)[RELi(2)Ge](4), crystallize in the orthorhombic space group Cmmm (No. 65) with a new structure type. Similarly, the compounds with general formula RE(11)Li(12)Ge(16) (RE = Ce-Nd), i.e., [REGe(2)](5)[RELi(2)Ge](6), crystallize in the orthorhombic space group Immm (No. 71) also with its own structure type. Temperature-dependent DC magnetization measurements indicate Curie-Weiss paramagnetism in the high-temperature regime and hint at complex magnetic ordering at low temperatures. The measured effective moments are consistent with RE(3+) ground states in all cases. The experimental results have been complemented by tight-binding linear muffin-tin orbital (TB-LMTO) electronic structure calculations.  相似文献   

3.
The Pt(II) coordination chemistry of oligocationic ammoniomethyl- and neutral aminomethyl-substituted triarylphosphines (L) is described. Complexes of the type PtX(2)(L)(2) (X = Cl, I) have been isolated and characterized. For the hexa-meta-ammoniomethyl-substituted ligands [1](6+) and [2](6+), two ligands always occupy a trans-configuration with respect to each other in complexes of the type PtX(2)(L)(2), while for the tri-para-ammoniomethyl-substituted ligand [7](3+), the trans/cis ratio is dependent on the ionic strength of the solution. This behaviour was not observed for the neutral aminomethyl-substituted ligands. In the crystal structure of trans-[PtI(2)(1)(2)]I(12), the geometrical parameters of the phosphine ligand [1](6+) are very similar to those found in the analogous complex of the benchmark ligand PPh(3), i.e. trans-PtI(2)(PPh(3))(2), indicating that no significant increase in the steric congestion is present in the complex. Instead, the coordination chemistry of this class of phosphine ligands is dominated by repulsive Coulombic inter-ligand interactions.  相似文献   

4.
A series of chiral M(6)M'(8) cluster compounds having twelve free carboxylate groups, [M(6)M'(8)(D-pen-N,S)(12)X](5-) (M/M'/X = Pd(II)/Ag(I)/Cl(-) ([1](5-)), Pd(II)/Ag(I)/Br(-) ([2](5-)), Pd(II)/Ag(I)/I(-) ([3](5-)), Ni(II)/Ag(I)/Cl(-) ([4](5-)), Pt(II)/Ag(I)/Cl(-) ([5](5-)), Pd(II)/Cu(I)/Cl(-) ([6](5-)); D-H(2)pen = D-penicillamine), in which six cis-[M(D-pen-N,S)(2)](2-) square-planar units are bound to a [M'(8)X](7+) cubic core through sulfur-bridges, was synthesized by the reactions of cis-[M(D-pen-N,S)(2)](2-) with M' in water in the presence of halide ions. These M(6)M'(8) clusters readily reacted with La(3+) in aqueous buffer to form La(III)(2)M(6)M'(8) heterotrimetallic compounds, La(2)[1](CH(3)COO), La(2)[2](CH(3)COO), La(2)[3](CH(3)COO), La(2)[4](CH(3)COO), La(2)[5](CH(3)COO) and La(2)[6]Cl, in which the M(6)M'(8) cluster units are linked by La(3+) ions through carboxylate groups in a 1?:?2 ratio. While the La(III)(2)M(6)Ag(I)(8) compounds derived from [1](5-), [2](5-), [3](5-), [4](5-) and [5](5-) have a 1D helix supramolecular structure with a right-handedness, the La(III)(2)Pd(II)(6)Cu(I)(8) compound derived from [6](5-) has a 2D sheet-like structure with a triangular grid of the Pd(II)(6)Cu(I)(8) cluster units. When aqueous HCl was added to the reaction solution of [6](5-) and La(3+), another La(III)(2)Pd(II)(6)Cu(I)(8) heterotrimetallic compound, La(2)[6]Cl·HCl, in which the Pd(II)(6)Cu(I)(8) cluster units are linked by La(3+) ions to form a 2D structure with a rectangular grid, was produced. The solid-state structures of these La(III)(2)M(6)M'(8) compounds, determined by single-crystal X-ray crystallography, along with the spectroscopic properties of the M(6)M'(8) cluster compounds in solution, are described.  相似文献   

5.
A new family of hydroxytris(pentafluorophenyl)borate anions [B(C6F5)3OH](-) associated with organic and aprotic cations c+ (imidazolium, pyrrolidinium and phosphonium) has been prepared by a general one-pot synthesis that implies the chloride borate analogues [B(C6F5)3Cl](-)[c]+. The [c]+[B(C6F5)3OH](-) salts have been isolated and fully characterized. The borate anion [B(C6F5)3OH](-) has been shown to protonate the Zr-Me bond in the Cp2ZrMe2 complex forming CH4 and the first published example of anionic [Cp2Zr(Me)OB(C6F5)3](-) species. Standard spectroscopic methods demonstrate the covalent character of the Zr metal center and the anionic character of the boron atom. This protonolysis methodology using [B(C6F5)3OH](-) anion affords a new route for the incorporation of a covalently bonded anionic functionality on organometallic complexes. This provides a new way to immobilize transition metal complexes in ionic liquids.  相似文献   

6.
The electronic properties of the isostructural series of heterotrinuclear thiophenolate-bridged complexes of the general formula [LFeMFeL](n)(+) with M = Cr, Co and Fe where L represents the trianionic form of the ligand 1,4,7-tris(4-tertbutyl-2-mercaptobenzyl)-1,4,7-triazacyclononane, synthesized and investigated by a number of experimental techniques in the previous work(1), are subjected now to a theoretical analysis. The low-lying electronic excitations in these compounds are described within a minimal model supported by experiment and quantum chemistry calculations. It was found indeed that various experimental data concerning the magnetism and electron delocalization in the lowest states of all seven compounds are completely reproduced within a model which includes the electron transfer between magnetic orbitals at different metal centers and the electron repulsion in these orbitals (the Hubbard model). Moreover, due to the trigonal symmetry of the complexes, only the electron transfer between nondegenerate orbital, a(1), originating from the t(2g) shell of each metal ion in a pseudo-octahedral coordination, is relevant for the lowest states. An essential feature resulting from quantum chemistry calculations, allowing to explain the unusual magnetic properties of these compounds, is the surprisingly large value and, especially, the negative sign of the electron transfer between terminal iron ions, beta'. According to their electronic properties the series of complexes can be divided as follows: (1). The complexes [LFeFeFeL](3+) and [LFeCrFeL](3+) show localized valences in the ground electronic configuration. The strong antiferromagnetic exchange interaction and the resulting spin 1/2 of the ground-state arise from large values of the transfer parameters. (2). In the complex [LFeCrFeL](+), due to a higher energy of the magnetic orbital on the central Cr ion than on the terminal Fe ones, the spin 3/2 and the single unpaired a(1) electron are almost localized at the chromium center in the ground state. (3). The complex [LFeCoFeL](3+) has one ground electronic configuration in which two unpaired electrons are localized at terminal iron ions. The ground-state spin S = 1 arises from a kinetic mechanism involving the electron transfer between terminal iron ions as one of the steps. Such a mechanism, leading to a strong ferromagnetic interaction between distant spins, apparently has not been discussed before. (4). The complex [LFeFeFeL](2+) is characterized by both spin and charge degrees of freedom in the ground manifold. The stabilization of the total spin zero or one of the itinerant electrons depends on beta', i.e., corresponds to the observed S = 1 for its negative sign. This behavior does not fit into the double exchange model. (5). In [LFeCrFeL](2+) the delocalization of two itinerant holes in a(1) orbitals takes place over the magnetic core of chromium ion. Although the origin of the ground-state spin S = 2 is the spin dependent delocalization, the spectrum of the low-lying electronic states is again not of a double exchange type. (6). Finally, the complex [LFeCoFeL](2+) has the ground configuration corresponding to the electron delocalization between terminal iron atoms. The estimated magnitude of the corresponding electron transfer is smaller than the relaxation energy of the nuclear distortions induced by the electron localization at one of the centers, leading to vibronic valence trapping observed in this compound.  相似文献   

7.
Zinc 2-Methyl-8-selanylquinolinate Zn[C9H5(Me)NSe]2 has been synthesized and its structure proved by X-ray analysis. The effect of different ligand atoms (Se or S) and a methyl group in position 2 of the ligand on the geometry of the coordinated zinc atom polyhedron has been studied for zinc 8-sulfanyl-, 8-selanyl-, and 2-methyl-8-selanylquinolinate. Dedicated to Academician E. Lukevics in recognition of his service to organometallic chemistry __________ Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 1, pp. 123–128, January, 2007.  相似文献   

8.
Cotton FA  Murillo CA  Yu R  Zhao Q 《Inorganic chemistry》2006,45(22):9046-9052
A series of tetranuclear compounds consisting of two {Mo2[(m-CF3C6H4)NC(H)N(m-CF3C6H4)]3}n+ moieties linked by two OH- or two O2- ions has been characterized. Abbreviating the dimolybdenum plus three spectator bridging ligands as [Mo2], the following three compounds have been made-[Mo2](mu-OH)2[Mo2] (1), [Mo2](mu-O)2[Mo2] (2), and {[Mo2](mu-O)2[Mo2]}SbF6 (3). Compound 1, which is diamagnetic and contains quadruply bonded Mo2(4+) units, is converted to diamagnetic 2 by oxidation with O2. Compound 2, which has Mo2(5+) units, is oxidized by NOSbF6 to 3 which has a rare Mo2(5.5+) core and an odd electron delocalized over the two dimolybdenum units.  相似文献   

9.
Potassium reduction of RZn(mu-I)2Li(OEt2)2 (R = [{(2,6-Pri2C6H3)N(Me)C}2CH]) affords the second compound with a Zn-Zn bond, RZn-ZnR. The air- and moisture-sensitive title compound was characterized by 1H NMR, elemental analyses, and single-crystal X-ray diffraction. The Zn-Zn bond was determined to be 2.3586(7) A; this value is only about 0.05 A longer than the Zn-Zn bond reported for Cp*Zn-ZnCp* (Cp* = C5Me5), the first reported compound with a Zn-Zn bond. In addition, density functional theory (DFT) computations on related model RZn-ZnR compounds provide insight into the intriguing Zn-Zn bond.  相似文献   

10.
A novel [Co(pentaamine)Cl](2+) complex having all tertiary amine or pyridine donors has been synthesized (pentaamine = 1,4-bis(2'-pyridyl)-7-methyl-1,4,7-triazacyclononane). This asym-[Co(dmpmetacn)Cl](2+) species has been completely characterized through 1D and 2D NMR studies, and through the X-ray structure for the ZnCl(4)(2)(-) salt. Despite the lack of an activating NH center, remarkably its hydrolysis to [Co(pentaamine)OH](2+) is base catalyzed (k(OH) 0.70 M(-)(1) s(-)(1), 25 degrees C, I = 1.0 M, NaCl). Detailed NMR studies reveal that the base catalyzed substitution leads to the exchange of just one deuterium in one of the two -CH(2)- pyridyl arms, that is approximately trans to the leaving group, and this occurs during and not after base hydrolysis. Quenching experiments for the reaction of asym-[Co(dmpmetacn)Cl](2+) and control experiments on H/D exchange for the product asym-[Co(dmpmetacn)OD](2+) in OD(-) show that each act of deprotonation at the acidic methylene leads to loss of Cl(-). This is the first established case of base catalyzed substitution for a complex where the effective site of deprotonation is at a pyridyl group. A pronounced kinetic isotope effect is observed for the species perdeuterated at the pyridyl methylenes (k(H)/k(D) = 5.0), consistent with rate limiting deprotonation which is a rare event in Co(III) substitution chemistry. The activation afforded by the carbanion is discussed in terms of a new process coined the pseudo-aminate mechanism.  相似文献   

11.
Different inorganic and organometallic gold(III) and gold(I) complexes have been tested in the addition of water and methanol to terminal alkynes. Anionic and neutral organometallic gold(III) compounds can efficiently mediate these reactions in neutral media in refluxing methanol. The compounds are added in catalytic amounts (1.6-4.5 mol % with respect to the alkyne). Thus, compounds of the general formula Q[AuRCl(3)], Q[AuR(2)Cl(2)], [AuRCl(2)](2), and [AuR(2)Cl](2) (Q = BzPPh(3)(+), PPN: N(PPh(3))(2)(+) or N(Bu)(4)(+); R = C(6)F(5) or 2,4,6-(CH(3))(3)C(6)H(2)) seem to behave as Lewis acids in nucleophilic additions to triple bonds. Some intermediates could be detected in the stoichiometric reaction between [Au(C(6)F(5))(2)Cl](2) and phenylacetylene that was followed by variable temperature (1)H, (19)F[(1)H], COSY (19)F[(1)H]-(19)F[(1)H], and (2)H[(1)H] NMR experiments. Compound [Au(C(6)F(5))(2)Cl](2) is also able to catalyze the hydration of phenylacetylene at room temperature. A plausible mechanism for the hydration reaction has been proposed.  相似文献   

12.
The normally remarkably inert SF6 has been found to be quite reactive toward low valent organometallic compounds, under conditions in which usually powerful fluorinating agents may be less reactive. Reaction of SF6 with Ti[1,3-C5H3(t-Bu)2](6,6-dmch)(PMe3), for example, leads to {Ti[1,3-C5H3(t-Bu)2]F2}4 (dmch = dimethylcyclohexadienyl), whose structure is based on a cube of fluoride ions with the ligated titanium centers situated above four coplanar face centers.  相似文献   

13.
The chemistry of the s-block metals is dominated by the +1 oxidation state for the Alkali metals (group 1) and the +2 oxidation state for the Alkaline Earth metals (group 2). In recent years, a series of stable dimeric magnesium(I) compounds has been prepared and their chemistry has started to develop. These complexes feature "deformable" Mg-Mg single bonds and are stabilised by sterically demanding and chelating anionic N-ligands that prevent their disproportionation. They have rapidly proven useful in organic and organometallic/inorganic reduction reactions as hydrocarbon soluble, stoichiometric, selective and safe reducing agents. The scope of this perspective focuses on stable molecular compounds of the general type LMgMgL and describes their synthesis, structures, theoretical and spectroscopic studies as well as their further chemistry. Also, comparisons are drawn with related complexes including magnesium(II) hydrides and dimeric zinc(I) compounds.  相似文献   

14.
A new synthetic pathway was reported to obtain N6 donor ligand 2,9-bis-(2',5'-diazahexanyl)-1,10-phenanthroline (L1) and its coordination compounds of essential divalent metal ions Mn, Fe, Co, Ni, Cu and Zn. Complete characterization of all compounds was done with the conventional techniques. Crystal structures of [NiL1](PF(6))(2) and [ZnL1](PF(6))(2)·H(2)O were also reported. Electrochemical studies have shown an active participation of the aromatic moiety of the ligand in redox reactions. The in vitro tests of the cytotoxic activity against human tumour cell lines HeLa (cervix) and CHP-212 (neuroblastoma) showed that all coordination compounds that involve redox active metal ions exhibit noteworthy antiproliferative activity, superior in all cases to cisplatin. [CuL1](2+) showed the lower IC(50) value in the HeLa cell line with 1.84 μM, meanwhile, [CoL1](2+) showed the lower value in neuroblastoma CHP-212 with IC(50) = 45.28 μM. None of these compounds were active against the SK-N-SH neuroblastoma cell line. In Entamoeba histolytica cultures, remarkable nanomolar IC(50) values were found for [NiL1](2+) and [MnL1](2+) with 60 nM and 80 nM respectively, improving the antiproliferative activity more than 1000 times compared with the first choice drug for clinical treatments of human amoebiasis, metronidazole. On the other hand, a free ligand does not show antiproliferative activity either on human tumor cell lines or on Entamoeba histolytica trophozoites, highlighting the role played by metal ions to produce cytotoxicity in tumor cells and protozoa systems.  相似文献   

15.
水相金属有机化学   总被引:4,自引:0,他引:4  
邓道利  陆忠辉  吴可 《有机化学》1994,14(4):337-349
本文对近年来锡、锌、铋等介入下的水相金属有机化学作了综述。特别对水相Barbier 反应作了较详细的介绍, 同时也描述了一些典型的水相金属有机反应,如Immonium 阳离子的烷基化反应, α, β 不饱和化合物的共轭加成, 醇醛缩合反应及水溶性金属有机化合物的反应等。某些反应的机理也被讨论。  相似文献   

16.
The discovery of decamethyldizincocene [Zn(2)(η(5)-Cp*)(2)] (Cp* = C(5)Me(5)), the first complex containing a covalent zinc-zinc bond, by Carmona in 2004 initiated the search for this remarkable class of compounds. Low-valent organozinc complexes can either be formed by ligand substitution reactions of [Zn(2)(η(5)-Cp*)(2)] or by reductive coupling reactions of Zn(ii) compounds. To the best of our knowledge, until now 25 low-valent Zn-Zn bonded molecular compounds stabilized by a variety of sterically demanding, very often chelating, organic ligands have been synthesized and characterized. There are two major reaction pathways of [Zn(2)(η(5)-Cp*)(2)]: it can either react with cleavage of the Zn-Zn bond or by ligand substitution. In addition, upon reaction with late transition metal complexes, [Zn(2)(η(5)-Cp*)(2)] was found to form novel intermetallic complexes with Cp*Zn and Cp*Zn(2) acting as unusual one-electron donor ligands. Very recently, the potential capability of [Zn(2)(η(5)-Cp*)(2)] to serve as a suitable catalyst in hydroamination reactions was demonstrated. Finally, the recent work on Cd-Cd bonded coordination compounds is reviewed.  相似文献   

17.
The new ruthenium complex [Ru(terpy)(dcbpy)(Hmte)](PF(6) )(2) ([2](PF(6) )(2) ; dcbpy=6,6'-dichloro-2,2'-bipyridine, terpy=2,2';6',2"-terpyridine, Hmte=2-(methylthio)ethanol) was synthesized. In the crystal structure, this complex is highly distorted, revealing steric congestion between dcbpy and Hmte. In water, [2](2+) forms spontaneously by reacting Hmte and the aqua complex [Ru(terpy)(dcbpy)(OH(2) )](2+) ([1](2+) ), with a second-order rate constant of 0.025?s(-1) M(-1) at 25?°C. In the dark, the Ru?S bond of [2](2+) is thermally unstable and partially hydrolyzes; in fact, [1](2+) and [2](2+) are in an equilibrium characterized by an equilibrium constant K of 151?M(-1) . When exposed to visible light, the Ru?S bond is selectively broken to release [1](2+) , that is, the equilibrium is shifted by visible-light irradiation. The light-induced equilibrium shifts were repeated four times without major signs of degradation; the Ru?S coordination bond in [2](2+) can be described as a robust, light-sensitive, supramolecular bond in water. To demonstrate the potential of this system in supramolecular chemistry, a new thioether-cholesterol conjugate (4), which inserts into lipid bilayers through its cholesterol moiety and coordinates to ruthenium through its sulfur atom, was synthesized. Thioether-functionalized, anionic, dimyristoylphosphatidylglycerol (DMPG), lipid vesicles, to which aqua complex [1](2+) efficiently coordinates, were prepared. Upon exposure of the Ru-decorated vesicles to visible light, the Ru?S bond is selectively broken, thus releasing [1](2+) that stays at the water-bilayer interface. When the light is switched off, the metal complex spontaneously coordinates back to the membrane-embedded thioether ligands without a need to heat the system. This process was repeated four times at 35?°C, thus achieving light-triggered hopping of the metal complex at the water-bilayer interface.  相似文献   

18.
The histidine-rich peptide H5WYG (GLFHAIAHFIHGGWHGLIHGWYG) was found to induce membrane fusion at physiologic pH in the presence of zinc chloride. In this study, we examined the ion selectivity of the interaction of Zn(2+) with H5WYG. This investigation was conducted by using adsorption at air/water interface and mass spectrometry. We found that a peptide-metal complex is formed with Zn(2+) ions. Electrospray ionisation-mass spectrometry (ESI-MS) reveals that the [H5WYG + Zn + 2H](4+), [H5WYG + Zn + H](3+) and [H5WYG + Zn](2+) ions, appearing by increasing the amount of Zn(2+) equivalent, correspond to a monomolecular H5WYG - Zn(2+) complex. Tandem mass spectrometry (MS/MS) provides evidence for the binding of the single Zn(2+) ion to the H(11) and H(19) and probably H(15) residues.  相似文献   

19.
The reaction between [Rh[C5H4CO2(CH)2OH](NBD)] (1) and 1,1'-carbonyldiimidazole (CDI) leads to the new CO2-imidazole functionalized alkoxycarbonylcyclopentadienyl complex [Rh[C5H4CO2(CH2)2O2C-Im](NBD)] (2) (Im=imidazole). The latter was treated with five generations of poly(propylenimine) dendrimers DAB-dendr-(NH2)(n) [n=4, 8, 16, 32, 64] (DAB=diaminobutane) to accomplish the synthesis of the new organometallic dendritic macromolecules DAB-dendr-[NH(O)COCH2CH2OC(O)C5H4Rh(NBD)](n) [n=4 (4), 8 (5), 16 (6), 32 (7), 64 (8)] based on flexible poly(propylenimine) dendrimer cores, built up to the fifth generation. Spectroscopic characterization of all the new compounds will be presented and discussed.  相似文献   

20.
An efficient and convenient method for the preparation of cis-3,5-diaminopiperidine (dapi) has been established and the coordination chemistry of this ligand with CoII, CoIII, NiII, CuII, ZnII, and CdII has been investigated in the solid state and in aqueous solution. Potentiometric measurements revealed a generally high stability for the bis complexes of the divalent cations with maximum stability for NiII (log beta2 = 21.2, beta2 = [M(dapi)2][M](-1)[dapi](-2), 25 degrees C, mu = 0.1 mol dm(-3)). Cyclic voltammetry established quasi-reversible formation of [Ni(dapi)2]3+ with a redox potential of 0.91 V (versus NHE) for the Ni(II/III) couple. [Co(dapi)2]3+ was prepared by aerial oxidation of the corresponding CoII precursor. The two isomers trans-[Co(dapi)2]3+ (1(3+), 26%) and cis-[Co(dapi)2]3+ (2(3+), 74%), have been separated and isolated as solid Cl- and CF3SO3- salts. In a non-aqueous medium 1(3+) and 2(3+) reacted with paraformaldehyde and NEt3 to give the methylidene-imino derivatives 3(3+) and 4(3+), in which the two piperidine rings are bridged by two or one N-CH2-O-CH2-N bridges, respectively. Crystal structure analyses were performed for H3dapi[ZnCl4]Cl, 1Cl3 x 2H2O, 2Cl3 x H2O, 3[ZnCl4]Cl, 4[ZnCl4]Cl, [Ni(dapi)2]Cl2 x H2O, [Cu(dapi)2](NO3)2, [Cu(dapi)Cl2], [(dapi)ClCd-(mu2-Cl)2-CdCl(dapi)], and [Co(dapi)(NO2)(CO3)]. The stability of [M(II)(dapi)]2+ and [M(II)(dapi)2]2+ complexes in aqueous solution, particularly the remarkably high tendency of [M(dapi)]2+ to undergo coordinative disproportionation is discussed in terms of the specific steric requirements of this ligand. Molecular mechanics calculations have been performed to analyze the different types of strain in these complexes. A variety of alkylated derivatives of dapi have been prepared by reductive alkylation with formaldehyde, benzaldehyde, salicylaldehyde, and pyridine-2-carbaldehyde. The NiII complexes of the pentadentate N3,N5-bis(2-pyridinylmethyl)-cis-3,5-diaminopiperidine (py2dapi) and the hexadentate N3,N5,1-tris(2-pyridinylmethyl)-cis-3,5-diaminopiperidine (py3dapi) have been isolated as crystalline ClO4- salts [Ni(py2dapi)Cl]ClO4 and [Ni(py3dapi)](ClO4)2 x H2O and characterized by crystal structure analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号