首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Atactic and syndiotactic poly(acrylic acid hydrazide) and atactic, syndiotactic and isotactic poly(methylacrylic acid hydrazide) have been reacted with the di-aldehydes derived from adenosine, guanosine, inosine, cytidine and uridine to give polymers each containing a single type of base residue. Not all of the hydrazide residues of the polymeric hydrazides reacted; guanosine dialdehyde gave the most reaction and inosine dialdehyde the least. Isotactic poly(methylacrylic acid hydrazide) was much less reactive than the other polymeric hydrazides. The adenine-containing and the cytosine-containing polymers with atactic backbones had a low solubility in water whereas those with syndiotactic backbones had a relatively high solubility. For a given polymeric hydrazide backbone the adenine-containing polymers were always the least soluble in water. Most of the ribonucleoside dialdehyde-containing polymers, with the exception of those containing uridine dialdehyde, had only a low solubility in salt solution (0.3M sodium chloride, 0.03M trisodium citrate). No evidence could be obtained for any interaction of these polymers with polynucleotides.  相似文献   

2.
The grafting of the potassium alkoxide derivative of poly(ethylene oxide) on poly(methyl methacrylate) in homogeneous solution in toluene was studied. The alkoxide was prepared by reaction with potassium metal with methanolic potassium methoxide, or with potassium naphthalene. The last was the most suitable for the systematic investigation of the grafting process. Soluble graft polymers were formed, and essentially the initial poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) participated in the production of graft polymer. The composition of the graft polymers and the frequency of grafting of the side chains were determined by NMR. The solubility of the graft polymers in methanol and water increased with increasing PEO contents, while the melting ranges decreased. Fractionation of the crude graft polymers showed that the grafting reaction was random, and graft polymers containing one PEO side chain per about 10–170 MMA units were obtained.  相似文献   

3.
Bobacka J  Lewenstam A  Ivaska A 《Talanta》1993,40(9):1437-1444
The potentiometric response of some polythiophenes in aqueous solutions has been investigated. Polythiophene (PT), poly(2,2'-bithiophene) (PBT), poly(3-methylthiophene) (PMT), poly(3-octylthiophene) (POT) and poly(4,4'-dioctyl2,2'-bithiophene) (POTd) were electrochemically deposited on platinum in 0.1M LiBF(4)-propylene carbonate solution containing the corresponding monomer or dimer. Polymer electrodes were also prepared by solution casting of chemically synthesized poly(3-octylthiophene) (POTc) dissolved in chloroform. After film deposition (electrochemical or chemical) the polymer coated electrodes were used as indicator electrodes in potentiometric measurements. The open-circuit potential of the polymer electrodes was measured in aqueous solutions containing inorganic salts (10(-1)-10(-4)M). Interestingly, all the polythiophenes studied were found to give a cationic response to monovalent cations such as H(+), Li(+), Na(+), K(+) and NH(+)(4) (Cl(-) salts). The slope, calculated from the linear part of the response curve, was found to depend on the polythiophene used but always remained lower than that predicted for a Nernstian response. The polythiophenes also showed some sensitivity to divalent cations such as Mg(2+) and Ca(2+) (Cl(-)-salts). POT was used as the polymer to study the influence of the polymerization conditions on the potentiometric response. By investigating different polymers from the polythiophene family it was possible to evaluate how the starting material (monomer or dimer) and the presence of alkyl side-chains influence the potentiometric response of the polymer membranes.  相似文献   

4.
Conducting polymers demonstrate low solubility in organic solvents. Introducing aliphatic substituents into polymer chains improves their solubility, but may also lead to changes in conformational characteristics of macromolecules. In the present work, the studies of hydrodynamic properties and conformational characteristics of comb‐shaped poly(3‐hexylthiophene) with aliphatic side substituents were carried out in chloroform solutions. Conformational analysis of the studied macromolecules was performed for the first time using homologous series with a wide range of molecular weights of the polymers in dilute solutions. The hydrodynamic properties of these macromolecules were interpreted using the worm‐like spherocylinder model and the straight spherocylinder model. The projection of the monomer unit in the direction of the main polymer chain λ = 0.37 nm was determined experimentally. The following parameters of poly(3‐hexylthiophene) were characterized and quantified: equilibrium rigidity (Kuhn segment length) А = 6.7 nm and hydrodynamic diameter of a polymer chain d = 0.6 nm. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 875–883  相似文献   

5.
Biosensor construction and characterization studies of poly(acrylic acid) (PAA) and poly(1-vinyl imidazole) (PVI) complex systems have been carried out. The biosensors were prepared by mixing PAA with PVI at several stoichiometric ratios, x (molar ratio of the monomer repeat units). The enzyme, invertase, was entrapped in the PAA/PVA interpenetrating polymer networks during complexation. Modifications were made on the PAA/PVI conducting polymer electrolyte matrixes to improve the stability and performance of the polymer electrolyte-based enzyme biosensor. The maximum reaction rate (V(max)) and Michaelis-Menten constant (K(m)) were investigated for the immobilized invertase. The temperature and pH optimization, operational stability, and shelf life of the polymer electrolyte biosensor were also examined.  相似文献   

6.
The thermodynamic properties of poly(methyl methacrylate-co-butyl acrylate-co-cyclo -pentylstyryl polyhedral oligomeric silsesquioxane) (poly(MMA-co-BA-co-styryl-POSS)) were investigated by means of inverse gas chromatography (IGC) using 20 different kinds of solvents as the probes. Some thermodynamic parameters, such as molar heats of sorption, weight fraction activity coefficient, Flory-Huggins interaction parameter, partial molar heats of mixing and solubility parameter were obtained to judge the interactions between POSS-contained polymers and solvents and the solubility of the polymers in these solvents. It was found that acetates, aromatic hydrocarbons and hydrocarbon halides were good solvents, n-hexane, ethanol, n-propanol, n-butanol and n-pentanol were moderate solvents, while n-heptane, n-octane, n-nonane, n-decane and methanol were poor solvents for all POSS-contained polymers within the experimental temperature range. Incorporation of POSS in polymer increased the solubility of polymers in solvents, and the more the POSS in polymer was, the better the solubility was and stronger the hydrogen bonding interaction was, but the POSS content in polymers seemed to have no obvious influence on the solubility parameter of polymers.  相似文献   

7.
The complexation of uranyl ion (UO22+) in aqueous solution with polymers containing carboxylic acid groups was studied potentiometrically. Overall formation constants of the uranyl complexes with poly(methacrylic acid) and crosslinked poly(acrylic acid) were much larger than those with the corresponding low molecular carboxylic acids. Decrease in the viscosity of the polymer solution on adding uranyl ion indicated that poly(acrylic acid) forms intra-polymer chelates with uranyl ion. The crosslinked poly(acrylic acid) adsorbed uranyl ions at higher efficiency than transition metal ions.  相似文献   

8.
The solubility of poly(ethyl oxazoline) in aqueous solutions was studied. The cloud point temperatures decreased in the presence of sodium chloride but increased by the addition of tetrabutylammonium bromide or dioxane. Solution-cast films of blends of the polymer and poly(acrylic acid) were miscible, but mutual precipitation occurred in water, methanol, and dioxane. The compositions of the complexes correspond in most cases to simple molar ratios of the interacting groups. The glass transition temperatures of the complexes are higher than the values for blends of the same compositions, and the high values are attributed to hydrogen bonds acting as physical crosslinks. Complex formation also occurs when the polymer is mixed with a styrene-acrylic acid copolymer and with low weight polymers containing phenol groups.  相似文献   

9.
Nanostructured films from two conducting polymers, poly(o-methoxyaniline) (POMA) and poly(3-thiopheneacetic acid) (PTAA), were fabricated with the layer-by-layer (LBL) technique. The electrochemical response of the LBL films differs from that of a POMA cast film, even in a potential range where PTAA is inactive. This is attributed to differences in the diffusion-controlled charge and mass transport, where distinct ionic species participate in the LBL films, as demonstrated by quartz crystal microbalance measurements. The results show that the transport properties of conducting polymers can be changed by alternation with layers of appropriate materials in LBL films.  相似文献   

10.
The pyrolysis—gas chromatograpic behaviour of poly(3-methyl-1-butenes) and poly(3-methyl-1-pentenes) with different monomer units was investigated. Both polymers have two different units in their polymer chains, that is, 1, 2- and 1,3-structures. The amounts of the pyrolysis products vary because of the different degradation mechanism of each unit. With poly(3-methyl-1-butenes) the amounts of the two units can be evaluated from the amounts of some of the pyrolysis products.  相似文献   

11.
Self-assembly of brush-like well-defined poly[poly(ethylene glycol) methyl ether methacrylate] homopolymers, abbreviated as P(PEGMA-475) and P(PEGMA-1100) is investigated in aqueous solution by employing dynamic/static light scattering (DLS/SLS) and transmission electron microscopy (TEM), whereas 475 and 1100 is molar mass of the respective PEGMA macromonomer. The mentioned brush-like homopolymers are synthesized by aqueous ATRP at room temperature. The critical association concentration (CAC) of the synthesized polymers in water depends on the length of the PEG side chains but not on the overall molar mass of the polymer. Thus, approximately the same CAC of approximately 0.35 mg/mL is estimated for various P(PEGMA-1100) samples, and approximately 0.7 mg/mL is estimated for P(PEGMA-475) series. All the investigated P(PEGMA-1100) samples form multimolecular micelles in aqueous solution, where the hydrodynamic size (Rh) and the aggregation number (Nagg) of micelles decreases as the molecular weight of P(PEGMA-1100) increases. This can be attributed to the increased steric hindrances between the PEG side chains in corona of micelles formed by higher molar mass P(PEGMA-1100). The tendency of micelle formation by samples of P(PEGMA-475) series is significantly lower than that of P(PEGMA-1100) series, as demonstrated by their significantly higher CAC and micelles of lower Nagg. The Rh of micelles does not depend strongly on polymer concentration, which suggests that these micelles are formed via the closed association model. Micelles formed by P(PEGMA-1100) series slightly shrink with increase in temperature from 25 to 60 degrees C, while those of P(PEGMA-475) series are found to be insensitive to the same temperature variation. Finally, TEM is carried out to visualize the formed micelles after transferring the aqueous solution to carbon film.  相似文献   

12.
Biodegradable poly(ester amide)s that contained phenylalanine residues in the main chains were synthesized by the polycondensation of di‐p‐nitrophenyl sebacate and phenylalanine 2‐aminoethyl ester. The stereoisomeric composition (L /D ratio) of the phenylalanine residue in the monomer did not affect the yield and molecular weight of the polymer much. From the optical rotations of the polymers, it was found that the L /D ratio of the phenylalanine residue in the polymer was almost equal to the L /D ratio of the phenylalanine residue in the monomer. The biodegradability of the poly(ester amide)s was studied in aqueous solutions with proteases as catalysts. The polymer with 100% L ‐phenylalanine residue was effectively degraded by α‐chymotrypsin or subtilisins. However, the replacement of 10% L ‐phenylalanine with D ‐isomer resulted in a dramatic decrease in degradability. The polymers with less than 30% L ‐isomer were hardly degraded by the enzymes. Gel permeation chromatography studies suggested that the solubility of the degradation products in water greatly affected the rate and extent of biodegradation. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 385–392, 2002  相似文献   

13.
The easily accessible, but virtually overlooked monomer methoxy diethylene glycol acrylate was polymerized by the RAFT method using monofunctional, difunctional, and trifunctional trithiocarbonates to afford thermoresponsive polymers exhibiting lower critical solution temperature‐type phase transitions in aqueous solution. The use of the appropriate RAFT agent allowed for the preparation and systematic variation of polymers with defined molar mass, end‐groups, and architecture, including amphiphilic diblock, symmetrical triblock, and triarm star‐block copolymers, containing polystyrene as permanently hydrophobic constituent. The cloud points (CPs) of the various polymers proved to be sensitive to all varied parameters, namely molar mass, nature, and number of the end‐groups, and the architecture, up to relatively high molar masses. Thus, CPs of the polymers can be adjusted within the physiological interesting range of 20–40 °C. Remarkably, CPs increased with the molar mass, even when hydrophilic end groups were attached to the polymers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.
Various types of fluorine‐containing star‐shaped poly(vinyl ether)s were successfully synthesized by crosslinking reactions of living polymers based on living cationic polymerization. Star polymers with fluorinated arm chains were prepared by the reaction between a divinyl ether and living poly(vinyl ether)s with fluorine groups (C4F9, C6F13, and C8F17) at the side chain using cationogen/Et1.5AlCl1.5 in a fluorinated solvent (dichloropentafluoropropanes), giving star‐shaped fluorinated polymers in high yields with a relatively narrow molecular weight distribution. The concentration of living polymers for the crosslinking reaction and the molar feed ratio of a bifunctional vinyl ether to living polymers affected the yield and molecular weight of the star polymers. Star polymers with block arms were prepared by a linking reaction of living block copolymers of a fluorinated segment and a nonfluorinated segment. Heteroarm star‐shaped polymers containing two‐ or three‐arm species were synthesized using a mixture of different living polymer species for the reaction with a bifunctional vinyl ether. The obtained polymers underwent temperature‐induced solubility transitions in various organic solvents, and their concentrated solutions underwent sol–gel transitions, based on the solubility transition of a thermoresponsive fluorinated segment. Furthermore, a slight amount of fluorine groups were shown to be effective for physical gelation when those were located at the arm ends of a star polymer. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

15.
A novel triphenylamine (TPA)‐containing bis(ether anhydride) monomer, namely 4,4′‐bis(3,4‐dicarboxyphenoxy)triphenylamine dianhydride, was synthesized and reacted with various aromatic diamines leading to a series of new poly(ether‐imide)s (PEI). Most of these PEIs were soluble in organic solvents and could be easily solution cast into flexible and strong films. The polymer films exhibited good thermal stability with glass‐transition temperatures in the range 211–299 °C. The polymer films exhibited reversible electrochemical processes and stable color changes (from transparent to navy blue) with high coloration efficiency and contrast ratio upon electro‐oxidation. During the electrochemical oxidation process, a crosslinked polymer structure was developed due to the coupling reaction between the TPA radical cation moieties in the polymer chains. These polymers can be used to fabricate electrochromic devices with high coloration efficiency, high redox stability, and fast response time. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 825–838  相似文献   

16.
Self‐controlled synthesis of hyperbranched poly(ether‐ketone)s (HPEKs) were prepared from “A2 + B3” approach by using different monomer solubility in reaction medium. 1,3,5‐Triphenoxybenzene as a hydrophobic B3 monomer was reacted with commercially available terephthalic acid or 4,4′‐oxybis(benzoic acid) as a hydrophilic A2 monomer in a hydrophilic reaction medium, polyphosphoric acid (PPA)/phosphorous pentoxide (P2O5). The resultant HPEKs were soluble in various common organic solvents and had the weight‐average molecular weight in the range of 3900–13,400 g/mol. The results implied that HPEKs were branched structures instead of crosslinked polymers. The molecular sizes and shapes of HPEKs were further assured by morphological investigation with scanning electron microscopy (SEM) and atomic force microscopy (AFM). Hence, the applied polymerization condition was indeed strong enough to efficiently facilitate polycondensation via “direct” Friedel‐Crafts reaction without gelation. It could be concluded that the polymer forming reaction was kinetically controlled by automatic and slow feeding of the hydrophobic B3 monomer into the hydrophilic reaction mixture containing hydrophilic comonomer. As a result, hyperbranched structures were formed instead of crosslinked polymers even at full conversion (equifunctional monomer feed ratio). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3326–3336, 2009  相似文献   

17.
A new diamine was prepared via reaction between 8-hydroxy-5-nitroquinoline and 4-nitrobenzoyl chloride, followed by reduction of the nitro groups of the resulted compound. Novel quinoline-based poly(ester-amide)s were produced through polycondensation reactions of the prepared diamine with different diacid chlorides. The monomer and poly(ester-amide)s were characterized and properties of the polymers including solution viscosity, thermal behavior and stability, solubility, and crystallinity were studied.

High thermal stability and improved solubility was observed for the polymers, indicating successful designing of monomer and related polymers for overcoming the main issue of thermally stable polymers, i.e. the problem of increasing solubility versus high thermal stability.

Also, by changing the diacid chlorides for the preparation of poly(ester-amide)s, the structure-property relations were investigated.  相似文献   

18.
In the present work, we have demonstrated a facile approach to increase the luminescence of the poly (p-phenylenevinylene)s via controlling the molecular aggregates induced by pi-stacking. We have synthesized new bulky tricyclodecane (TCD) substituted PPVs: poly(2-methoxy-5-tricyclodecanemethyleneoxy-1,4-phenylenevinylene) (MTCD-PPV), poly(bis-2,5-tricyclodecanemethyleneoxy-1,4-phenylenevinylene) (BTCD-PPV), and a series of symmetrically substituted bulky PPV copolymers (P-1-P-7) covering the entire composition range from 0 to 100 mol %. The structures of the monomers and polymers were confirmed by 1H NMR and FTIR, and the molecular weights were determined by gel permeation chromatography. The composition analysis by NMR revealed that the bulky monomer was highly reactive and the incorporation of bulky units in MEH-PPV increased irrespective of the feed ratio. The polymers possess good solubility, high molecular weights, good thermal stability, and so forth. The molecular weights of the PPV copolymers were also significantly affected by the bulky substitution: the higher the incorporation of bulky units, the lower the molecular weight. The absorption and emission studies revealed that there was no influence on the MEH-PPV by TCD substitution in solution whereas in the solid state the photoluminescence intensity of PPV increased more than 10 times. The luminescence increase in PPV was observed throughout the entire bulk and was not confined to any particular domain in the polymer. The bulky PPV copolymers showed that both the luminescence intensity (in film) and quantum yields (in solution) increased with an increase in the extent of BTCD incorporation in the MEH-PPV and attained a maximum for 50% BTCD. The TCD unit has thus proved to be an efficient bulky susbstituent for PPV as it controls the pi-stack-induced molecular aggregates in the polymer chains by increasing the interchain distances. The new bulky PPV copolymers are highly soluble, thermally stable, and highly luminescent besides being economically cheap compared to the other materials reported so far for the bulkier approach in pi-conjugated materials.  相似文献   

19.
谢建军  梁吉福  罗迎社 《应用化学》2011,28(11):1250-1255
采用反相悬浮聚合法,通过均匀实验设计,制备了聚(丙烯酸(AA)/2-丙烯酰胺基-2-甲基丙磺酸(AMPS))(PAAMPS)高吸水树脂,探讨了单体摩尔分数及其中和度、引发剂及交联剂摩尔分数(相对于单体总量)对蒸馏水、质量分数0.9%NaCl水溶液中吸液性能的影响,并经实验数据拟合,得到了二次回归方程,比较了优化配方、单因素实验的模拟值和实验值,结果表明,模拟值与优化值基本接近,其优化工艺参数为:AMPS占单体的摩尔分数8%,中和度为75%,交联剂、引发剂用量与单体的摩尔分数分别为0.035%和0.17%,单体总质量浓度为30%,分散剂用量为单体质量分数的0.5%,反应温度70 ℃,反应时间1.5 h。 此条件下合成的PAAMPS在蒸馏水、0.9%NaCl水溶液中的吸液倍率分别为1.600和130 g/g。  相似文献   

20.
Poly(anhydride-ester)s and poly(anhydride-amide)s derived from both 4- and 5-aminosalicylate acids (4- and 5-ASA) were synthesized and characterized by physicochemical methods. Thermal and solubility characteristics directly correlated to the polymer backbone composition; polymers based on 5-ASA had greater solubilities in organic solvents than polymers based on 4-ASA, and the poly(anhydride-ester)s thermally decomposed at temperatures nearly 100 °C higher than the corresponding poly(anhydride-amide)s. The polymers were self-contained, controlled-release systems that combine the drug and controlled-release mechanism into the polymer backbone. The erosion and degradation characteristics of the polymers were measured in physiologically relevant media. All polymer matrices fully degraded in media buffered to pH 7.4, whereas in acidic media (pH 1.2), all polymer matrices maintained greater than 50% mass over a 90-day time period. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3667–3679, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号