首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 343 毫秒
1.
以胶态SiO2纳米粒子为模板,壳聚糖为碳源,ZnCl2为活化剂,制备了具有不同比表面积和孔体积的氮掺杂介孔碳。采用多种表征手段对碳材料的微观形貌、比表面积和孔道结构进行了表征,探究了壳聚糖与SiO2纳米粒子的比例以及ZnCl2活化剂对碳材料孔体积和比表面积的影响。结果表明,在未使用活化剂时碳材料(CSi-1.75)的孔体积高达4.53 cm3·g-1,但其比表面积最小(729 m2·g-1);使用ZnCl2作为活化剂制备的碳材料(CSi-1.75-Zn)比表面积为1032 m2·g-1,但其孔体积下降到1.99 cm3·g-1,且具有最多的吡啶氮和吡咯氮。在以6.0 mol·L-1 KOH为电解液的三电极体系中,当电流密度为0.5 A·g-1时,CSi-1.75-Zn的比电容为344 F·g-1,而CSi-1.75的比电容仅为255 F·g-1。这表明碳材料的比表面积对超级电容性能影响最大,而孔体积影响较小。电容贡献分析结果表明,相对于CSi-1.75,CSi-1.75-Zn的双电层电容和赝电容都得到了提高,这表明更大的比表面积和更多的吡啶氮和吡咯氮有利于提高碳材料的超级电容性能。  相似文献   

2.
以冷冻干燥获得的多孔胡萝卜为炭源,经过600℃氮气氛围下炭化和KOH活化,获得了多孔结构的炭材料。采用红外光谱、X-射线粉末衍射、扫描电镜、透射电镜、循环伏安、恒流充放电和交流阻抗对多孔炭进行了微结构和电容性能研究。结果表明:通过活化处理,多孔炭的比表面积从7m2·g-1大幅提高到147m2·g-1。而且,活化后的多孔炭产生了414F·g-1的最大比电容,且电流增至4A·g-1时的电容保持率为74.5%。而未活化的多孔炭最大电容为253F·g-1,电容保持率仅为45.1%。此外,活化后的多孔炭还具有优异的电化学稳定性。在5A·g-1电流下循环8000圈后,其电容保持率高达94%。活化后的多孔炭在电容性能方面的极大改善与其比表面积的大幅提高及介孔的增多有密切关系。  相似文献   

3.
以冷冻干燥获得的多孔胡萝卜为炭源,经过600℃氮气氛围下炭化和KOH活化,获得了多孔结构的炭材料。采用红外光谱、X-射线粉末衍射、扫描电镜、透射电镜、循环伏安、恒流充放电和交流阻抗对多孔炭进行了微结构和电容性能研究。结果表明:通过活化处理,多孔炭的比表面积从7 m2·g-1大幅提高到147 m2·g-1。而且,活化后的多孔炭产生了414 F·g-1的最大比电容,且电流增至4 A·g-1时的电容保持率为74.5%。而未活化的多孔炭最大电容为253 F·g-1,电容保持率仅为45.1%。此外,活化后的多孔炭还具有优异的电化学稳定性。在5 A·g-1电流下循环8 000圈后,其电容保持率高达94%。活化后的多孔炭在电容性能方面的极大改善与其比表面积的大幅提高及介孔的增多有密切关系。  相似文献   

4.
以具有多级孔结构、高比表面积、良好导电性等特征的碳纳米笼(CNCs)为前体,采用硝酸氧化法在CNCs表面引入含氧官能团。以CNCs为超级电容器电极材料,在相同电流密度下,官能团化样品的比电容显著高于纯CNCs;在1A·g-1下比电容最高可达到255F·g-1,比纯CNCs的188F·g-1增加了34%,这表明表面含氧官能团化能够显著提高CNCs的超级电容器比电容。在100A·g-1的大电流密度下,硝酸氧化后CNCs的比电容保持在111~167F·g-1,表明具有良好的耐大电流充放电性能。在10A·g-1的电流密度下循环10000圈后,CNC-6M样品的比电容由196F·g-1下降到176F·g-1,样品的比电容仍保留90%,具有良好的循环稳定性。表面含氧官能团化CNCs所表现出的这种优异的超级电容器性能归因于CNCs的多尺度分级孔结构、高比表面积、良好的导电性、表面亲水性含氧官能团化带来的浸润性提高和引入的赝电容。  相似文献   

5.
首先利用硬模板法制备出介孔碳/石墨烯复合材料,然后向复合材料中引入具有赝电容活性的醌类分子进一步增大材料的电容性能。研究结果表明,负载30%(w/w)叔丁基氢醌的介孔碳/石墨烯复合材料具有最佳的电容性能,在电流密度为0.5 A·g-1时,比电容值为355 F·g-1;当电流密度高达30 A·g-1时,其比电容值高达226 F·g-1,比电容保持率为64%,表现出良好的速率特性。  相似文献   

6.
以惰性盐KCl为模板、硝酸镍为金属催化剂镍源、葡萄糖为碳源,通过碳化处理制备了介孔石墨化碳片。利用扫描电子显微镜、透射电子显微镜、X-射线衍射仪和比表面测试仪对介孔石墨化碳片进行了表征。探讨了碳片形成的机理,采用三电极测试体系研究了介孔石墨化碳片电极材料的电化学性能。结果表明,10gKCl制备的碳片比表面积最大(989m2·g-1),在6mol·L-1KOH电解液中,当电流密度为0.5A·g-1时,比电容达到180F·g-1;当电流密度达到10A·g-1时,比电容维持在148F·g-1,显示了电极具有较好的倍率性能;在10A·g-1条件下,2000次循环充放电测试后电容没有发生衰减,展示了在超级电容器方面的应用潜力。  相似文献   

7.
以蔗糖为碳源、尿素为氮源、草酸钾为活化剂,通过简单的研磨和高温碳化制备了具有超高比表面积(大于3 000 m2·g-1)的氮掺杂多孔碳材料。采用多种手段对多孔碳材料的微观形貌、比表面积、孔结构和表面氮物种进行了表征,探究了不同温度下草酸钾和尿素对碳材料的比表面积、氮含量和超级电容性能的影响。结果表明,仅使用草酸钾作为活化剂制备的碳材料KC-800的比表面积为1 114 m2·g-1,而同时使用草酸钾和尿素制备的样品KNC-800的比表面积高达3 033 m2·g-1。在以6.0mol·L-1 KOH为电解液的三电极体系中,当电流密度为0.5 A·g-1时,KNC-800的比电容为405 F·g-1,而KC-800的比电容仅为248 F·g-1。这表明草酸钾和尿素的加入显著提高了多孔碳材料的比表面积和超级电容性能。电容贡献分析表明,KNC-800的双电层电容值和赝电容值均...  相似文献   

8.
以尿素、四水合氯化锰和氧化石墨烯为原料,采用水热法并通过热分解制备了一种具有石墨烯包覆结构的石墨烯-二氧化锰复合材料,利用扫描电子显微镜、X射线衍射、比表面积(BET)、拉曼光谱和热失重等技术对其形貌、晶体结构及表面结构进行了表征;在三电极条件下利用循环伏安法、恒流充放电法和交流阻抗法测试了材料的电化学性能,并考察了不同石墨烯含量对材料比电容的影响. 结果表明,在不添加模板剂的条件下制备的复合材料中二氧化锰是具有介孔结构的α-MnO2,当复合15%(质量分数)的石墨烯后材料的比表面积从109 m2·g-1提高到168 m2·g-1. 复合材料具有更好的电化学性能,在0.2 A·g-1电流密度下复合材料的比电容达到最大值(454 F·g-1),远高于纯二氧化锰的值(294 F·g-1). 在2 A·g-1的电流密度下恒流充放电2000 次后复合材料的比电容保持率为92%.  相似文献   

9.
通过两步法制备了一种空心六边形镍钴硫化物(HHNCS)与还原氧化石墨烯(RGO)的纳米复合材料HHNCS/RGO。利用XRD,SEM,TEM和Raman光谱等对复合物进行表征,发现镍钴硫化物为空心六边形结构,并且均匀地附着在RGO的表面。该纳米复合物用作超级电容器电极表现出优异的电化学性能。在电流密度为1 A·g-1时比电容为927 F·g-1;当电流密度增大到20 A·g-1时,比电容仍高达724 F·g-1,表明材料拥有较好的倍率性能。此外,在电流密度5 A·g-1下循环2000次后比电容保留有初始值的93%,显示出优异的循环稳定性。HHNCS/RGO优异的电容性能主要是由于RGO的存在不仅增强了材料的导电性,而且作为理想的载体分散HHNCS纳米片。HHNCS/RGO纳米复合物优异的电化学性能使其在超级电容器电极材料领域具有应用前景。  相似文献   

10.
采用电化学沉积在碳纳米管纤维上复合锌钴氢氧化物纳米片(CNTF@ZnCo-OH),并研究其电化学性能。实验结果表明CNTF@ZnCo-OH电极在2 A·g-1的电流密度下比电容为748 F·g-1,在10 A·g-1的电流密度下循环2 000圈以后,比电容保持率高达110.4%。该优异循环性能得益于碳纳米管纤维基底的网络结构和ZnCo-OH的纳米片状结构。以CNTF@RGO(石墨烯)为负极、CNTF@ZnCo-OH为正极,组装线状全固态非对称CNTF@ZnCo-OH//CNTF@RGO超级电容器。该器件在0.5 A·g-1电流密度下比电容为70 F·g-1,2 000次循环后电容保持率为79.6%,并且在不同的弯曲状态下保持电化学性能不变,具有优良的机械稳定性。该非对称线状器件可以在0.8~1.4 V之间工作,其能量密度高达19.1 Wh·kg-1,对应的功率密度为1 400.3 W·kg-1。2个30 mm长的线状器件可持续点亮LED灯10 s。  相似文献   

11.
以胶态SiO2纳米粒子为模板,壳聚糖为碳源,ZnCl2为活化剂,制备了具有不同比表面积和孔体积的氮掺杂介孔碳。采用多种表征手段对碳材料的微观形貌、比表面积和孔道结构进行了表征,探究了壳聚糖与SiO2纳米粒子的比例以及ZnCl2活化剂对碳材料孔体积和比表面积的影响。结果表明,在未使用活化剂时碳材料(CSi-1.75)的孔体积高达4.53 cm3·g-1,但其比表面积最小(729 m2·g-1);使用ZnCl2作为活化剂制备的碳材料(CSi-1.75-Zn)比表面积为1 032 m2·g-1,但其孔体积下降到1.99 cm3·g-1,且具有最多的吡啶氮和吡咯氮。在以6.0 mol·L-1KOH为电解液的三电极体系中,当电流密度为0.5 A·g-1时,CSi-1.75...  相似文献   

12.
通过两步法制备了一种空心六边形镍钴硫化物(HHNCS)与还原氧化石墨烯(RGO)的纳米复合材料HHNCS/RGO。利用XRD,SEM,TEM和Raman光谱等对复合物进行表征,发现镍钴硫化物为空心六边形结构,并且均匀地附着在RGO的表面。该纳米复合物用作超级电容器电极表现出优异的电化学性能。在电流密度为1 A·g-1时比电容为927 F·g-1;当电流密度增大到20 A·g-1时,比电容仍高达724 F·g-1,表明材料拥有较好的倍率性能。此外,在电流密度5 A·g-1下循环2 000次后比电容保留有初始值的93%,显示出优异的循环稳定性。HHNCS/RGO优异的电容性能主要是由于RGO的存在不仅增强了材料的导电性,而且作为理想的载体分散HHNCS纳米片。HHNCS/RGO纳米复合物优异的电化学性能使其在超级电容器电极材料领域具有应用前景。  相似文献   

13.
以具有多级孔结构、高比表面积、良好导电性等特征的碳纳米笼(CNCs)为前体,采用硝酸氧化法在CNCs表面引入含氧官能团。以CNCs为超级电容器电极材料,在相同电流密度下,官能团化样品的比电容显著高于纯CNCs;在1 A·g-1下比电容最高可达到255 F·g-1,比纯CNCs的188 F·g-1增加了34%,这表明表面含氧官能团化能够显著提高CNCs的超级电容器比电容。在100 A·g-1的大电流密度下,硝酸氧化后CNCs的比电容保持在111~167 F·g-1,表明具有良好的耐大电流充放电性能。在10 A·g-1的电流密度下循环10 000圈后,CNC-6M样品的比电容由196 F·g-1下降到176 F·g-1,样品的比电容仍保留90%,具有良好的循环稳定性。表面含氧官能团化CNCs所表现出的这种优异的超级电容器性能归因于CNCs的多尺度分级孔结构、高比表面积、良好的导电性、表面亲水性含氧官能团化带来的浸润性提高和引入的赝电容。  相似文献   

14.
采用化学沉淀法, 在导电基底上原位生长多孔状氧化镍。采用X射线衍射(XRD)、扫描电镜(SEM)和透射电子显微镜(TEM)对其结构和形貌进行了表征。采用循环伏安、恒流充放电技术和交流阻抗对其电化学性能进行了测试。结果表明, 由于泡沫镍导电基底增强了电极的导电性, 充分利用各组成单元的多孔特性, 在电流密度为0.5 A·g-1时, 电极的比容量达到3.5 F·cm-2 (705 F·g-1), 同时电极具有较好的倍率特性(电容保持率68.1%)和稳定的长循环寿命(3 000次循环后电极比容量增加17.6%)。  相似文献   

15.
采用化学沉淀法,在导电基底上原位生长多孔状氧化镍.采用X射线衍射(XRD)、扫描电镜(SEM)和透射电子显微镜(TEM)对其结构和形貌进行了表征.采用循环伏安、恒流充放电技术和交流阻抗对其电化学性能进行了测试.结果表明,由于泡沫镍导电基底增强了电极的导电性,充分利用各组成单元的多孔特性,在电流密度为0.5 A·g-1时,电极的比容量达到3.5 F·cm-2 (705 F·g-1),同时电极具有较好的倍率特性(电容保持率68.1%)和稳定的长循环寿命(3 000次循环后电极比容量增加17.6%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号