首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We describe the synthesis, as well as the electrochemical and structural characterization, of sulfonated polysulfone intended for use in PEM fuel cells. Starting from a commercial polysulfone, we assessed the performance of these prepared ionomers using synthesis protocols compatible with industrial production. The efficiency of the trimethylsilyl chlorosulfonate and chlorosulfonic acid reagents in the sulfonation process was confirmed by 1H NMR, FTIR, elemental analysis, chemical titration and thermal analysis (DSC and TGA). Chlorosulfonic acid was the most effective sulfonation reagent. However, based on SEC-MALLS, this reagent induced degradation of the backbone that is detrimental to the thermomechanical stability and lifespan of the membranes. The electrical characterization of the membranes was undertaken using impedance spectroscopy in contact with different HCl aqueous solutions at various temperatures. The activation energies, which ranged from 8.2 to 11 kJ/mol, were in agreement with the prevailing proton vehicular mechanism.  相似文献   

3.
The electrochemical characterization of boron-doped polycrystalline diamond thin-film (BDF) electrodes was studied using the anodic scan after concentrating lead in 0.1 mol/L KCl - 41 micromol/L Hg(NO(3))(2) and 0.1 mol/L KNO(3) - 0.01 mol/L HNO(3) - 41 micromol/L Hg(NO(3))(2); accumulation voltage was -0.90 V. The results obtained were compared with those given by glassy carbon (GC) electrodes and proved that the BDF electrodes offered high sensitivity, good precision and extreme stability over a 2-month period. These electrodes provided good resolving power for the determination of lead and cadmium and gave satisfactory results in the analysis of a pure water sample.  相似文献   

4.
The electrochemical characterization of boron-doped polycrystalline diamond thin-film (BDF) electrodes was studied using the anodic scan after concentrating lead in 0.1 mol/L KCl – 41 mol/L Hg(NO3)2 and 0.1 mol/L KNO3 – 0.01 mol/L HNO3 – 41 mol/L Hg(NO3)2; accumulation voltage was –0.90 V. The results obtained were compared with those given by glassy carbon (GC) electrodes and proved that the BDF electrodes offered high sensitivity, good precision and extreme stability over a 2-month period. These electrodes provided good resolving power for the determination of lead and cadmium and gave satisfactory results in the analysis of a pure water sample.  相似文献   

5.
The electrochemical properties of various commercial carbon materials (activated carbon (AC), graphite (GP) and hard carbon (HC)) have been investigated for use as negative electrode for lithium ion capacitors. The rate capabilities and cycle durabilities are tested up to 20 C and 1000 cycles using full cell configurations. It is found that the lithium ion could not efficiently intercalate into the activated carbon materials. The symmetrical AC/AC capacitor shows good cycle durabilities at 10 C with capacity of 17 mA h g?1. The asymmetrical capacitors AC/GP and AC/HC with intercalated negative electrodes show higher capacities than that of AC/AC capacitor. Moreover, the AC/HC has better rate capabilities than AC/GP.  相似文献   

6.
In the present work the electrochemical deposition of Au-Sn alloys is addressed and a cyanide-free process is presented. The electrolyte is an acidic thiourea solution containing gold as a Au[CS(NH2)2]+ complex and tin as stannous ions. Results concerning the plating process development and deposit characterization are reported. Au-Sn alloy films with a Sn content up to 50 at% and a single-phase structure can be obtained from the acidic thiourea–Au(I) solution under pulsed current plating conditions. Alloy deposits show three main crystal structures: a face centred cubic (fcc) Au(Sn) solid solution, extending up to 7 at% Sn; a hexagonal close-packed structure, of the same type as the metallurgical phase, up to about 18 at% Sn; and a NiAs-type structure, corresponding to the phase of the equilibrium diagram, with an enlarged homogeneity range. Mechanical properties of thin layers of Au-Sn alloys derived from micro-indentation measurements follow the structural modification with the alloy composition. The ordered intermetallic phases occurring in the equilibrium binary system, in particular the and phases at 8 at% and 16 at% Sn, respectively, are not detected in the electrodeposited alloys. The main factors controlling electrochemical phase formation are pointed out, considering the differences between the phase structure of the electrodeposited alloys and the equilibrium phase diagram.Presented at the 3rd International Symposium on Electrochemical Processing of Tailored Materials held at the 53rd Annual Meeting of the International Society of Electrochemistry, 15–20 September 2002, Düsseldorf, Germany  相似文献   

7.
A new preparation route towards rare-earth (RE) doped polycrystalline lead lanthanum zirconate titanate (PLZT) ceramics (RE = Y3+, Nd3+, Yb3+), based on the use of doped lanthanum oxide or zirconia, is reported. Structural characterization by X-ray powder diffraction reveals that secondary phase formation can be substantially diminished in comparison to conventional preparation methods. The distribution of the rare-earth dopants was investigated as a function of concentration by static 207Pb spin echo NMR spectra, using Fourier Transformation of Carr–Purcell–Meiboom–Gill spin echo trains. For the Nd- and Yb-doped materials, the interaction of the 207Pb nuclei with the unpaired electron spin density results in significant broadening and shifting of the NMR signal, whereas these effects are absent in the diamagnetic Y3+ doped materials. Based on different concentration dependences of the NMR lineshape parameters, we conclude that the structural role of the Nd3+ dopants differs significantly from that of Yb3+. While the Nd3+ ions appear to be statistically distributed in the PLZT lattice, incorporation of Yb3+ into PLZT appears to be limited by the appearance of doped cubic zirconia as a secondary phase.  相似文献   

8.
The electrochemistry of , and cobalt-containing cordierites (Co2Al4Si5O18) attached to paraffin-impregnated graphite electrodes has been studied by linear scan and cyclic voltammetries in HCl+NaCl and NaOH electrolytes. This electrochemistry is compared with that of vitreous cobalt cordierite, cobalt(II) oxide and cobalt spinel aluminate (CoAl2O4), the two last taken as reference materials. Electrochemical processes involve the site-characteristic reduction of Co(II) species to cobalt metal near to –0.5 V vs. SCE and their oxidative dissolution near +0.3 V, accompanied by solid state interconversion between Co(II) and Co(III) at potentials above +0.45 V. Cordierite-modified electrodes display a significant site-dependent catalytic effect on the electrochemical oxidation of mannitol in 0.10 M NaOH.  相似文献   

9.
The effect of depositing different numbers of insulating layers from a silica sol onto an ITO support was investigated to elucidate the changes occurring to diffusion and transfer mechanisms compared with bare electrodes. The electrochemical studies highlighted unexpected trends, which were discussed with respect to literature models and interpreted in the light of the physicochemical characterization (by FE-SEM, AFM, UV–vis transmittance) and particularly the hydrophilicity of the layers.  相似文献   

10.
The formation of a self-assembled monolayer (SAM) of 4-aminothiophenol (4-ATP) on polycrystalline platinum electrodes has been characterized by surface analysis and electrochemistry techniques. The 4-ATP monolayer was characterized by cyclic voltammetry (CV), linear sweep voltammetry, Raman spectroscopy, reflection-absorption infrared (RAIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). CV was used to study the dependence of the adsorption time and 4-ATP solution concentration on the relative degree of coverage of 4-ATP monolayers on polycrystalline Pt electrodes. The adsorption time range probed was 24-72 h. The optimal concentration of 4-ATP needed to obtain the highest surface at the lowest adsorption time was 10 mM. RAIR and Raman spectroscopy for 4-ATP-modified platinum electrodes showed the characteristic adsorption bands for 4-ATP, such as nuNH, nuCH(arom), and nuCS(arom), indicating the adsorption on the platinum surface. The XPS spectra for the modified Pt surface presented the binding energy peaks of sulfur and nitrogen. High energy resolution XPS studies, RAIR, and Raman spectrum for platinum electrodes modified with 4-ATP indicate that the molecules are sulfur-bonded to the platinum surface. The formation of a S-Pt bond suggests that ATP adsorption leads to an amino-terminated electrode surface. The thickness of the monolayer was evaluated via angle-resolved XPS (AR-XPS) analyses, giving a value of 8 A. As evidence of the terminal amino group on the electrode surface, the chemical derivatization of the 4-ATP SAM was done with 16-Br hexadecanoic acid. This surface reaction was followed by RAIR spectroscopy.  相似文献   

11.
The DNA-Transistor is a device designed to control the translocation of single-stranded DNA through a solid-state nanopore. Functionality of the device is enabled by three electrodes exposed to the DNA-containing electrolyte solution within the pore and the application of a dynamic electrostatic potential well between the electrodes to temporarily trap a DNA molecule. Optimizing the surface chemistry and electrochemical behavior of the device is a necessary (but by no means sufficient) step toward the development of a functional device. In particular, effects to be eliminated are (i) electrochemically induced surface alteration through corrosion or reduction of the electrode surface and (ii) formation of hydrogen or oxygen bubbles inside the pore through water decomposition. Even though our motivation is to solve problems encountered in DNA transistor technology, in this paper we report on generic surface chemistry results. We investigated a variety of electrode-electrolyte-solvent systems with respect to their capability of suppressing water decomposition and maintaining surface integrity. We employed cyclic voltammetry and long-term amperometry as electrochemical test schemes, X-ray photoelectron spectroscopy, atomic force microscopy, and scanning, as well as transmission electron microscopy as analytical tools. Characterized electrode materials include thin films of Ru, Pt, nonstoichiometric TiN, and nonstoichiometric TiN carrying a custom-developed titanium oxide layer, as well as custom-oxidized nonstoichiometric TiN coated with a monolayer of hexadecylphosphonic acid (HDPA). We used distilled water as well as aqueous solutions of poly(ethylene glycol) (PEG-300) and glycerol as solvents. One millimolar KCl was employed as electrolyte in all solutions. Our results show that the HDPA-coated custom-developed titanium oxide layer effectively passivates the underlying TiN layer, eliminating any surface alterations through corrosion or reduction within a voltage window from -2 V to +2 V. Furthermore, we demonstrated that, by coating the custom-oxidized TiN samples with HDPA and increasing the concentration of PEG-300 or glycerol in aqueous 1 mM KCl solutions, water decomposition was suppressed within the same voltage window. Water dissociation was not detected when combining custom-oxidized HDPA-coated TiN electrodes with an aqueous 1 mM KCl-glycerol solution at a glycerol concentration of at least 90%. These results are applicable to any system that requires nanoelectrodes placed in aqueous solution at voltages that can activate electrochemical processes.  相似文献   

12.
Journal of Solid State Electrochemistry - β-Nickel hydroxide was successfully synthesized by a hydrothermal method. Nano-nickel hydroxide material was characterized by X-ray diffraction,...  相似文献   

13.
14.
Tin-based composite oxide materials have received considerable attention as potential anode materials for rechargeable lithium batteries. In this contribution we present the results of our investigations of the SnOB2O3P2O5 system. We have investigated its electrochemical properties and especially its cycling performance. A focus of our interest was to explain the structural changes which occur during lithium cycling and their strong dependence on the preparation method. A part of the SnO component was converted into a very stable metallic phase. In addition, a decrease was observed in capacity owing to the formation of isolated and inactive tin grains. We also report on structural changes in the B2O3P2O5 matrix. Received: 2 October 1997  / Accepted: 3 July 1998  相似文献   

15.
Two hydrotalcite-like compounds (HTs) were synthesized by coprecipitation. The electrochemical behavior of MgZnGa ([Mg0.58 Zn0.17Ga0.25 (OH)2] (CO3)2? 0.125 1.5 H2O) and ZnGaAl ([Zn0.75Ga0.19 Al0.06 (OH)2] (CO3)2? 0.125·1.5 H2O) Hydrotalcite-like compounds (HTs) was studied in NaOH at different concentrations. Voltammetric and chronoamperometric studies were performed to identify oxidation and reduction processes and the effect of the cations in total reactivity. Electrocatalytic effect of HTs on hydroxide electrochemical oxidation shows better performance of MgZnGa; this is apparently due to the presence of Mg and a greater amount of Ga3+ in the lattice of this HT. As far as reduction is concerned, Zn(II) reduction process is observed within the lattices of both HTs and is influenced by both the amount of OH? in the solution and the potential which the previous oxidation has been performed.  相似文献   

16.
Amorphous titanium trisulfide (TiS3) active materials were prepared by ball milling of an equimolar mixture of crystalline titanium disulfide (TiS2) and sulfur. A high-resolution transmission electron microscope image revealed no periodic lattice fringes on the amorphous TiS3. The all-solid-state lithium secondary batteries using a sulfide solid electrolyte and the amorphous TiS3 electrode showed high capacity of greater than 300 mAh g?1 for 10 cycles. The amorphous TiS3 had a higher capacity than the mixture of crystalline TiS2 and S, which was used as the starting material of amorphous TiS3. The X-ray diffraction patterns and the Raman spectra of the amorphous TiS3 electrode after the first and tenth charge–discharge measurements were similar to those before the measurement. The amorphous structure of TiS3 did not change greatly during the first few cycles. The all-solid-state cells with the amorphous TiS3 electrode showed higher initial coulombic efficiency because the amorphous TiS3 active material retained its structure during the initial electrochemical test.  相似文献   

17.
Herein, the scanning electrochemical microscopy (SECM) approach is applied to study the formation of thiol-porphyrin self-assembled monolayer (SAMs). Using cyclic voltammetry (CV), the formation process is characterized adopting different probe molecules. The observed phenomena indicate that the formation process is affected by solution properties and the molecular structure of the probe molecules. In K(3)Fe(CN)(6) , the SAMs show a strong electron-transfer (ET) blocking effect on a pure porphyrin-modified electrode. However, addition of metal ions to the porphyrin molecules leads to ET. A consistent tendency is observed throughout the modification process using CV and SECM methods. Furthermore, k(eff) values, the apparent heterogeneous rate constants, obtained for different modification periods affirm the validity of these results. SECM images are used to collect surface information in the course of the modification process when the substrate potential is 0.5 V versus Ag/AgCl. The effect of the substrate potential indicates that the oxidation of the porphyrin molecules is supported by more positive potentials because of the similar bimolecular reaction of the porphyrin ring with positive charge and the probe molecules with negative charge.  相似文献   

18.
Polyelectrolyte/gold nanoparticle multilayers composed of poly(l-lysine) (pLys) and mercaptosuccinic acid (MSA) stabilized gold nanoparticles (Au NPs) were built up using the electrostatic layer-by-layer self-assembly technique upon a gold electrode modified with a first layer of MSA. The assemblies were characterized using UV-vis absorption spectroscopy, cyclic and square-wave voltammetry, electrochemical impedance spectroscopy, and atomic force microscopy. Charge transport through the multilayer was studied experimentally as well as theoretically by using two different redox pairs [Fe(CN)(6)](3-/4-) and [Ru(NH(3))(6)](3+/2+). This paper reports a large sensitivity to the charge of the outermost layer for the permeability of these assemblies to the probe ions. With the former redox pair, dramatic changes in the impedance response were obtained for thin multilayers each time a new layer was deposited. In the latter case, the multilayer behaves as a conductor exhibiting a strikingly lower impedance response, the electric current being enhanced as more layers are added for Au NP terminated multilayers. These results are interpreted quite satisfactorily by means of a capillary membrane model that encompasses the wide variety of behaviors observed. It is concluded that nonlinear slow diffusion through defects (pinholes) in the multilayer is the governing mechanism for the [Fe(CN)(6)](3-/4-) species, whereas electron transfer through the Au NPs is the dominant mechanism in the case of the [Ru(NH(3))(6)](3+/2+) pair.  相似文献   

19.
Journal of Solid State Electrochemistry - Electrochemical performances of non-stoichiometric Cu2S x (1.25 ≤ x ≤ 0.625) cathodes prepared by spray...  相似文献   

20.
In this study, H2Ti3O7 nanowires were successfully synthesized via a hydrothermal process and post-treatments. The diameter of the nanowires is found to be about 30 nm and the length up to several micrometers. A lithium battery using H2Ti3O7 nanowires as the active material of the positive electrode exhibits a discharge capacity of 100 mA hg−1 and still keeps stable after 200 cycles at a current density as high as 40 Ag−1, demonstrating excellent high rate performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号