首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The dynamics of the processes of isomerization and decomposition of C46 fullerene has been studied by computer simulation in the real-time regime. At an intermediate stage of evolution of the cluster (before it loses the spheroidal shape), isomers in which groups of adjacent pentagons and hexagons of C-C bonds are connected to each other with two-, four-, and six-atomic carbyne chains have been revealed. An analysis of the potential energy hypersurface has demonstrated that the isomers are quite stable and some of them can be observed experimentally.  相似文献   

2.
Yong-Zhe Guo 《中国物理 B》2022,31(12):128102-128102
Carbyne, the linear chain of carbon, promises the strongest and toughest material but possesses a Peierls instability (alternating single-bonds and triple-bonds) that reduces its strength and toughness. Herein, we computationally found that the gravimetric strength, strain-to-failure, and gravimetric toughness can be improved from 74 GPa·g-1·cm3, 18%, and 9.4 kJ·g-1 for pristine carbyne to the highest values of 106 GPa·g-1·cm3, 26%, and 19.0 kJ·g-1 for carbyne upon hole injection of +0.07 e/atom, indicating the charged carbyne with record-breaking mechanical performance. Based on the analyses of the atomic and electronic structures, the underlying mechanism behind the record-breaking mechanical performance was revealed as the suppressed and even eliminated bond alternation of carbyne upon charge injection.  相似文献   

3.
Yun Hang Hu   《Physics letters. A》2009,373(39):3554-3557
An sp carbon chain, which contains only one carbon atom in its cross section, is generally considered unstable. In this Letter, however, the DFT calculations showed that an isolated sp carbon chain is more stable than the smallest armchair (3,0) and zigzag (2,2) single-walled carbon nanotubes (SWCNT). This is consistent with the fact that an isolated sp carbon chain was observed by high-resolution transmission electron microscopy, but isolated (3,0) and (2,2) SWCNTs were never produced. Nevertheless, the sp chain is less stable than lager SWCNTs.  相似文献   

4.
Carbyne is an ideal one-dimensional conductor and the thinnest interconnection in an ultimate nano-device and it requires an understanding of the mechanical properties that affect device performance and reliability. Here, we report the mechanical properties of finite-size carbyne, obtained by a molecular dynamics simulation study based on the adaptive intermolecular reactive empirical bond order potential. To avoid confusion in assigning the effective cross-sectional area of carbyne, the value of the effective cross-sectional area of carbyne (4.148 Å2) was deduced via experiment and adopted in our study. Ends-constraints effects on the ultimate stress (maximum force) of the carbyne chains are investigated, revealing that the molecular dynamics simulation results agree very well with the experimental results. The ultimate strength, Young's Modulus and maximum strain of carbyne are rather sensitive to the temperature and all decrease with the temperature. Opposite tendencies of the length dependence of the overall ultimate strength and maximum strain of carbyne at room temperature and very low temperature have been found, and analyses show that this originates in the ends effect of carbyne.  相似文献   

5.
The steady-state energy distribution of thermal vibrations at a given ambient temperature has been investigated based on a simple mathematical model that takes into account central and noncentral interactions between carbon atoms in a one-dimensional carbyne chain. The investigation has been performed using standard asymptotic methods of nonlinear dynamics in terms of the classical mechanics. In the first-order nonlinear approximation, there have been revealed resonant wave triads that are formed at a typical nonlinearity of the system under phase matching conditions. Each resonant triad consists of one longitudinal and two transverse vibration modes. In the general case, the chain is characterized by a superposition of similar resonant triplets of different spectral scales. It has been found that the energy equipartition of nonlinear stationary waves in the carbyne chain at a given temperature completely obeys the standard Rayleigh–Jeans law due to the proportional amplitude dispersion. The possibility of spontaneous formation of three-frequency envelope solitons in carbyne has been demonstrated. Heat in the form of such solitons can propagate in a chain of carbon atoms without diffusion, like localized waves.  相似文献   

6.
An abnormal injection current density through SiO2 has been observed recently for both signs of charge carriers in experiments with an oriented carbyne film grown on a SiO2 layer. The absence of a surface leakage current and the insulating property of SiO2 were experimentally proved. The temperature dependence of the current through SiO2 showed low activation energy and confirmed the model of thermally activated injection. A strong influence of the electric field applied transverse to the carbon chains on the current through SiO2 was observed. A model of energetic barrier reduction at the carbyne interface based on the hypothesis of transverse inter-chain hopping in the electric field was proposed. It was shown that a transverse electric field can be induced in a carbyne film as in one-dimensional media. The first organic light emitting device with a carbyne-based effective injector was fabricated.  相似文献   

7.
The electronic structure of amorphous carbyne has been investigated by X-ray photoelectron spectroscopy and X-ray emission spectroscopy. Carbyne band structure has been calculated semiempirically and the experimental data have been interpreted on the basis of the calculation results. The valence band width was found to be about 20 eV which is the same as that in all other condensed carbon structures. The fine satellite structure near the 1s line of carbon has been studied. It is shown that the energy bands in carbyne are arranged in a mirror-like way relative to the Fermi level. The real carbyne structure is susceptible to conformations which affect primarily the π-subband structure.  相似文献   

8.
9.
10.
Carbyne is an infinitely long linear chain of carbon atoms with sp1 hybridization and the truly one-dimensional allotrope of carbon. While obtaining freestanding carbyne is still an open challenge, the study of confined carbyne, linear chains of carbon encapsulated in carbon nanotubes, provides a pathway to explore carbyne and its remarkable properties in a well-defined environment. In this review, we discuss the basics and recent advances in studying single confined carbyne chains by Raman spectroscopy, which is their primary spectroscopic characterization method. We highlight where single carbyne chain studies are needed to advance our understanding of confined carbyne as a material system and provide an overview of the open questions that need to be addressed and of those aspects currently under debate.  相似文献   

11.
Thin films of the conjugated polymer poly(3‐hexylthiophene) (P3HT) and blends of the soluble fullerene derivative[6,6]‐phenyl C61‐butyric acid methyl ester (PCBM) with P3HT—a well studied but not completely understood donor–acceptor system for organic solar cells—have been studied by means of UV–visible absorption and resonant Raman spectroscopy. Additionally, we have employed atomic force microscopy phase imaging to characterize the nanomorphology of the P3HT : PCBM thin film, revealing a close intermixing of two phases with domain sizes ranging from a few to several tens of nanometers. A systematic analysis of pristine polymer and blend Raman spectra provides evidence that features attributable to PCBM, possibly even depending on the charge state of the fullerene molecule, can be observed. Hence our results suggest that fullerene inclusions in polymer/fullerene blends can be identified via Raman spectroscopy. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
Structural transformations of the cumulene form of amorphous carbyne which are induced by heating at high pressure (7.7 GPa) are investigated. These can be described by the sequence amorphous phase — crystal — amorphous phase — disordered graphite. Raman scattering shows that predominately the chain structure of carbyne remains at the first three stages. It was found that the intermediate crystalline phase is an unknown modification of carbon whose structure is identified as cubic (a=3.145 Å). A mechanism of structural transformations in carbyne that involves the formation of new covalent bonds between chains is discussed. Pis’ma Zh. éksp. Teor. Fiz. 66, No. 4, 237–242 (25 August 1997)  相似文献   

13.
This paper presents the results of plasmochemical synthesis of fullerene derivatives with hydrogen, iodine, iridium, platinum, and scandium. The synthesis is carried out under atmospheric pressure in a carbon-helium plasma stream formed by an ac arc in the rf range.  相似文献   

14.
15.
Fullerene coalescence experimentally found in fullerene-embedded single-wall nanotubes under electron-beam irradiation or heat treatment is simulated by minimizing the classical action for many atom systems. The dynamical trajectory for forming a (5,5) C120 nanocapsule from two C60 fullerene molecules consists of thermal motions around potential basins and ten successive Stone-Wales-type bond rotations after the initial cage-opening process for which energy cost is about 8 eV. Dynamical paths for forming large-diameter nanocapsules with (10,0), (6,6), and (12,0) chiral indexes have more bond rotations than 25 with the transition barriers in a range of 10-12 eV.  相似文献   

16.
An ab initio DFT study of atomic and electronic structure of carbyne crystals was carried out. The influence of hydrogen impurities on carbyne structure was investigated. Calculations with atomic relaxations showed that carbon chains in the carbyne crystal structure are bow-like curved; free-energy calculations showed that the most probable lengths of those chains are four and six atoms, which is in a good agreement with experiments. Carbyne-crystal electronic-structure analysis showed that there is a small gap of 0.09 eV near the Fermi level in four-atomic carbyne, while there is no such gap in six-atomic carbyne. In studying of the hydrogen impurity influence on the atomic and electronic structure of carbyne crystals, hydrogen atoms were embedded in two directions: across and along carbon chains in the crystal. As a result we found that the crystal structure is not distorted in the case of hydrogen embedded across the chains, while the type of bonding between carbon atoms in carbon chains in the carbyne crystal structure depended on the impurity concentration. The crystal structure was distorted when hydrogen was embedded along the chains. The concentration of impurities influences the conductivity of a carbyne crystal.  相似文献   

17.
Iron fullerene clusters are prepared by plasma chemical synthesis and investigated using electron magnetic resonance. It is shown that these clusters can be prepared both by plasma chemical synthesis of fullerenes with iron and by mixing of a fullerene solution with a powder of iron nanoparticles coated with carbon shells. A liquid chromatographic technique is proposed for separating iron fullerence clusters.  相似文献   

18.
19.
A summary account is given of various aspects of the structure and spin density distribution for the different isotopomers of C60X (X=H, Mu) and for the different isomers of C70Mu. The rigidity of the C60X structure is exploited in describing the origin of the zero point hyperfine isotope effect.Ab initio Hartree-Fock calculations suggest that the deformation to the C60 cage is highly localised and emphasizes the alkene nature of C60. Addition of muonium to C70 results in 5 possible structures for C70MU, 3 with alkene and 2 with arene character.  相似文献   

20.
Highly-charged fullerene ions C 60 z+ and C 70 z+ with charge states up to z=7 have been produced in an electron impact ion source of a two sector field mass spectrometer by using ion source operating conditions similar to those used in EBIT sources. The stability of these ions was investigated quantitatively in the two field free regions of the mass spectrometer. It was found that besides C2 evaporation the dominant fission process for ions with charges larger than +2 is the loss of a charged C 2 + unit via a super-asymmetric charge separation reaction C 60 z+ C 58 (z–1)+ +C 2 + and C 70 z+ C 68 (z–1)+ +C 2 + , respectively. The most important finding from these studies is that this super-asymmetric dissociation reaction proceeds via a three stage reaction sequence involving an electron transfer reaction at the second stage between a receding C2 unit and the remaining highly-charged fullerene cage.Based on a lecture given by S. Matt at the 1st Euroconference on Atomic Physics with Stored Highly Charged Ions, Heidelberg, 1995.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号