首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structural studies of the high molecular weight (HMW) glutenin subunits 1Dy10 and 1Dy12 of bread wheat were conducted using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS) and reversed-phase high-performance liquid chromatography/electrospray ionisation mass spectrometry (RP-HPLC/ESI-MS). For both proteins, MALDI-TOFMS analysis showed that the isolated fractions contained a second component with a mass about 500-540 Da lower than the major component. The testing and correction of the gene-derived amino acid sequences of both proteins were performed by direct MALDI-TOFMS analysis of their tryptic peptide mixture and analysis of the digests was performed by recording several MALDI mass spectra of the mixture at low, medium and high mass ranges, optimising the matrix and the acquisition parameters for each mass range. Complementary data were obtained by RP-HPLC/ESI-MS analysis of the tryptic digest. This resulted in the coverage of the whole protein sequences except for two short fragments (T1 and T8), which are identical in the two homologous subunits, and for an additional dipeptide (T14) in subunit 1Dy12, which were not detected. It also demonstrated that, in contrast to the gene-derived data, the sequence of subunit 1Dy12 does not include the dipeptide Gly-Gln between residues Gln(454) and Pro(455), and that the lower mass components present in both fractions correspond to the same sequences lacking short peptides that are probably lost from the protein N- or C-termini. Finally, the results obtained provide evidence for the lack of a substantial level of glycosylation or other post-translational modifications of the two subunits, and demonstrate that mass spectrometric mapping is the most useful method presently available for the direct verification of the gene-derived sequences of HMW glutenin subunits and similar proteins.  相似文献   

2.
Atmospheric pressure matrix-assisted laser desorption/ionisation quadrupole ion trap (AP-MALDI/QIT) mass spectrometry has been investigated for the analysis of polyethylene glycol (PEG 1500) and a hyperbranched polymer (polyglycidol) in the presence of alkali-metal salts. Mass spectra of PEG 1500 obtained at atmospheric pressure showed dimetallated matrix/analyte adducts, in addition to the expected alkali-metal/PEG ions, for all matrix/alkali-metal salt combinations. The relative intensities of the desorbed ions were dependent on the matrix, the alkali-metal salt added to aid cationisation and the ion trap interface conditions [capillary temperature, in-source collisionally-induced dissociation (CID)]. These data indicate that the adducts are rapidly stabilised by collisional cooling enabling them to be transferred into the ion trap. Experiments using identical sample preparation conditions were carried out on a vacuum MALDI time-of-flight (ToF) mass spectrometer. In all cases, vacuum MALDI-ToF spectra showed only alkali-metal/PEG ions and no matrix/analyte adducts. The tandem mass spectrometry (MS/MS) capability of the ion trap has been demonstrated for a lithiated polyglycol yielding a rich fragment-ion spectrum. Analysis of the hyperbranched polymer polyglycidol by AP-MALDI/QIT reveals the characteristic ion series for these polymers as also observed under vacuum MALDI-ToF conditions.  相似文献   

3.
Direct tandem mass spectrometric (MS/MS) analysis of small, singly charged protein ions by tandem time-of-flight mass spectrometry (TOFMS) is demonstrated for proteins up to a molecular mass of 12 kDa. The MALDI-generated singly charged precursor ions predominantly yield product ions resulting from metastable fragmentation at aspartyl and prolyl residues. Additional series of C-terminal sequence ions provide in some cases sufficient information for protein identification. The amount of sample required to obtain good quality spectra is in the high femtomolar to low picomolar range. Within this range, MALDI-MS/MS using TOF/TOF trade mark ion optics now provides the opportunity for direct protein identification and partial characterization without prior enzymatic hydrolysis.  相似文献   

4.
N-Linked oligosaccharide mixtures released from a number of standard glycoproteins were derivatised with 3-acetylamino-6-acetylaminoacridine (AA-Ac) using reductive amination. Analysis of these mixtures using an experimental matrix-assisted laser desorption/ionisation (MALDI) hybrid quadrupole orthogonal acceleration time-of-flight (Q-TOF) mass spectrometer provided detailed information about the mass distribution of the glycan derivatives. Collision-induced dissociation of the singly protonated [M + H](+) ions also gave rise to a number of product ions produced by the sequential cleavage of the glycosidic linkages. As fragmentation of the positively charged species occurred predominantly in one direction, i.e., from the non-reducing end of the glycan to the AA-Ac moiety, a considerable amount of information could be obtained with ease about the sequence in which the sugar residues were attached to one another. This derivatisation procedure and mass spectrometric methodology were applied successfully to neutral and acidic glycans released from proteins separated by gel electrophoresis.  相似文献   

5.
The structural characterisation of the adducts formed by in vitro interaction of hemoglobin (Hb) with 1,2,3,4-diepoxybutane (DEB), the most reactive 1,3-butadiene (BD) metabolite, was obtained by liquid chromatography/electrospray ionisation mass spectrometry (LC/ES-MS) analysis of modified tryptic peptides of human hemoglobin chains. The reactive sites of human hemoglobin towards DEB and its hydroxylated derivatives (trihydroxybutyl (THB)-derivatives) were identified through the characterisation of alkylated tryptic peptides by matrix-assisted laser desorption/ionisation tandem mass spectrometry (MALDI-MS/MS). Based on this characterisation, a procedure was set up to measure the Hb-adducts of THB-derivatives by isotope dilution mass spectrometry with the use of a deuterated peptide standard. The results obtained here could permit optimisation of molecular dosimetry of BD-adducts, and extension of the analysis to the biological monitoring of occupational exposure to butadiene.  相似文献   

6.
A refined sample preparation procedure for matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS) was developed for the evaluation of the degree of substitution (DS) in partially depolymerised carboxymethyl cellulose (CMC). By adding ammonium sulphate to the sample mixture prior to the analysis, good quality mass spectra could be acquired. The usual time-consuming search for 'sweet-spots' at the crystalline rim of the MALDI target spot was also avoided. This quality improvement made it possible to investigate whether various positions on the target spot generated mass spectra in which the measured DS varied. The accuracy and reproducibility of the sample preparation procedure were tested by applying it on three commercial CMCs. The study shows that the DS values that were calculated from the spectra acquired from the centre region of the MALDI target spot were in better agreement with the DS provided by the supplier than were the values obtained from the large crystals at the target spot rim. This observation could be one reasonable explanation for the higher DS values reported in other publications. By applying our refined MALDI sample preparation procedure DS values that were in good agreement with the values provided by the manufacturer could be obtained. This indicates that MALDI-TOFMS of partially depolymerised CMCs can be used for an estimation of the DS as a complement to the more established methods, e.g. NMR, titrimetry, and chromatographic techniques.  相似文献   

7.
A new generation of guanidino-labelling (GLaD) reagents were developed for quantitative proteomics using offline microcapillary liquid chromatography (LC) matrix-assisted laser desorption/ionisation mass spectrometry (MALDI-MS). In order to reduce the unwanted overlapping between the isotopic envelopes of the two differentially labelled peptide ions, a novel synthetic route was described for production of both (13)C- and (15)N-containing isotopomers of N,O-dimethylisourea. The use of these types of isotopes has no deleterious effect on the retention times of both differentially labelled peptides during offline microbore reversed-phase LC. In addition, the possibility to incorporate a mass difference of 4 Da can be exploited during post-source decay analysis to generate product ion spectra in which fragment ions containing the modifications appear as doublets in the corresponding product ion spectra, thus facilitating identification of the C-terminal fragment ions.  相似文献   

8.
Sample preparation effects in matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS) of partially depolymerised carboxymethyl cellulose (CMC) have been investigated. The depolymerisation was either enzymatic or acidic. Fractions of enzymatically depolymerised CMC were collected from size-exclusion chromatography (SEC) and further investigated by MALDI-TOFMS. 2,5-Dihydroxybenzoic acid was used as matrix, dissolved in H(2)O due to the poor solubility of CMC in suitable organic solvents. The samples were dried by two methods, in ambient atmosphere and at reduced pressure. Under reduced pressure the sample spot homogeneity increased. This drying method, however, produced additional adduct peaks in the mass spectra originating from ion exchange on the CMC oligomers. Analysis of CMC could be performed in both negative and positive ion modes. Mass discrimination and variation in ionisation efficiency were demonstrated by comparing mass spectra with SEC data. Measurements of the degree of substitution (DS) were performed on three CMCs with different DS values, which were depolymerised in trifluoroacetic acid. The three CMCs were easily distinguished from one another, but the obtained DS values deviated from the values supplied by the manufacturer.  相似文献   

9.
Differences in the ionisation efficiency of chlorophylls and their phaeophytin counterparts result in lower sensitivity for atmospheric pressure chemical ionisation mass spectrometric detection of the former. Improvement in the sensitivity of detection of chlorophyll of around an order of magnitude at a concentration of 1 x 10(-6)mol L(-1) has been achieved using post-column addition of methanoic acid during analysis by liquid chromatography/mass spectrometry (LC/MS). The method gives linear response and is a simple strategy to improve sensitivity both for LC/MS and LC/MS/MS without loss of information relating to the precise nature of the tetrapyrrole distributions. Detection levels achieved exceed those obtained by absorbance detection.  相似文献   

10.
Fluorophore-assisted carbohydrate electrophoresis (FACE) is a fast and efficient analytical method which is now widely used in glycobiology for the separation and quantification of free or glycoprotein-released oligosaccharides. However, since identification by FACE of N-glycan structures is only based on their electrophoretic mobility after labelling with 8-aminonaphthalene-1,3, 6-trisulfonic acid (ANTS), co-migration of derived glycans on gel could occur which may result in erroneous structural assignments. As a consequence, a protocol was developed for the fast and efficient matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass spectrometric analysis of ANTS-labelled N-glycans. N-Glycans were isolated from plant and mammalian glycoproteins, reductively aminated with the charged fluorophore 8-aminonaphthalene-1, 3, 6-trisulfonic acid (ANTS) and separated using high resolution polyacrylamide gel electrophoresis. The ANTS-labelled glycans were eluted from FACE gel slices and then analysed by MALDI-TOF mass spectrometry in negative ion mode. Using 3-aminoquinoline containing 2.5 mM citrate NH(4)(+) as matrix, neutral N-linked N-glycans, as well as labelled sialylated oligosaccharides, were found to be easily detected in the 2-10 picomole range giving rise to ?M - H(-) ions.  相似文献   

11.
Atmospheric pressure matrix-assisted laser desorption/ionization (AP-MALDI) has proven a convenient and rapid method for ion production in the mass spectrometric analysis of biomolecules. This technique, like other atmospheric pressure ionization methods, suffers from ion loss during ion transmission from the atmosphere into the vacuum of the mass spectrometer. In this work, a simple model describing ion formation and ion motion towards the inlet capillary of the mass spectrometer is described. Both the gas flow and electric field near the MALDI plate were numerically calculated using the boundary element method (BEM). The ions were moving along with the gas flow and drifting in the electric field in accordance with their ion mobility properties. The ion signal dependence on an electric field strength obtained in the proposed model correlates well with experimental results.  相似文献   

12.
Matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS) has been investigated as a tool for accurate determination of the molecular mass of synthetic analogues of prazosine, a molecule used for the treatment of hypertension. Samples were dissolved in methanol, mixed with mass calibration standards, and crystallised on the target with alpha-cyano-4-hydroxycinnamic acid as matrix. Acquisition of spectra was rapidly completed in reflectron mode, allowing high resolution (6000-10000) and sensitive (about 1-10 pmol of sample on target) determination of the synthetic products. The results show the effectiveness of MALDI-TOFMS for accurate mass determination of these fairly large molecules, which are otherwise difficult to analyse by other high-resolution mass spectrometric techniques.  相似文献   

13.
This work presents a simple method for obtaining homogeneous sample surfaces in matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS) for the automated analysis of peptides and proteins. The sample preparation method is based on applying the sample/matrix mixture onto a pre-deposited highly diluted matrix spot. The pre-deposited crystals act as seeds for the new sample containing crystals which become much smaller in size and more evenly distributed than with conventional methods. This 'seed-layer' method was developed, optimised and compared with the dried-droplet method using peptides and proteins in the 1000-20,000 Da range. The seed-layer method increases the surface homogeneity, spot to spot reproducibility and sample washability as compared with the commonly used dried-droplet method. This methodology is applicable to alpha-cyanohydroxycinnamic acid, sinapinic acid and ferulic acid, which all form homogeneous crystal surfaces. Within-spot variation and between-spot variation was investigated using statistics at a 95% confidence level (n = 36). The statistical values were generated from more than 5000 data points collected from 500 spectra. More than 90% of the sample locations results in high intensity spectra with relatively low standard deviations (RSDs). Typically obtained data showed an RSD of 19-35% within a sample spot as well as in-between spots for proteins, and an RSD of < or = 50% for peptides. Linear calibration curves were obtained within one order of magnitude using internal calibration with a point-RSD of 3% (n = 10). The sample homogeneity allows mass spectra (average of 16 laser shots) to be obtained on each individual sample within 15 sec, whereby a 100 spot target plate can be run in 25 min. High density target plates using the seed-layer method were prepared by spotting approximately 100 picoliter droplets onto the target, resulting in sample spots < or = 500 microns in diameter using a flow-through piezo-electric micro-dispenser. By using this automated sample preparation step lower standard deviations are obtained in comparison to manually prepared samples.  相似文献   

14.
This study records a novel application of methacrylate-based monolithic columns for MALDI-TOF/TOF MS analyses in proteomics for pre-concentration and separation of peptides derived from protein digestion. Reversed-phase monolithic capillary columns (30 mm × 0.32 mm i.d.) were created inside the fused silica capillary via thermal-initiated free-radical polymerization of ethylene glycol dimethacrylate and lauryl methacrylate monomers in the presence of 1-propanol and 1,4-butandiol as a porogen system. The elution of peptides was achieved using a linear gradient of acetonitrile from 0 to 60% in water with 0.1% trifluoroacetic acid formed in a microsyringe. Individual fractions of separated peptides were collected on the MALDI target spots covered with alpha-cyano-4-hydroxycinnamic acid used as a matrix and then they were analyzed using MALDI-TOF/TOF mass spectrometry. The developed method was tested with a mixture of tryptic peptides from bovine serum albumin and its applicability was also tested for tryptic in-gel digests from barley grain extracts of water soluble proteins separated using SDS gel electrophoresis. The number of detected peptides was approximately three to four times higher compared to the analysis without previous separation. These results show an improved quality of sample information with the higher amount of identified peptides which increased protein sequence coverage and improved sensitivity of mass spectrometry measurements.  相似文献   

15.
Salts with low melting points, also termed room-temperature ionic liquids, can be used as matrices in matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF). They have great vacuum stability, and can dissolve polar and apolar solutes including carbohydrates, biological oligomers and proteins. The ionic liquids give much more homogeneous sample solutions compared with solid matrices. We demonstrate the usefulness of using ionic matrices to determine the molecular weight of DNA oligomers by direct TOF mass spectrometric analysis. Three oligonucleotides were tested, (d(pT)(10), d(pC)(11), and d(pC)(12)), with several ionic matrices synthesized from different bases associated to two acids (3-hydroxypicolinic acid and 2,5-dihydroxybenzoic acid). The results obtained show that the best ionic matrices enhance the ion peak intensity of the oligonucleotides with respect to conventional molecular matrices under our experimental conditions. In one case, an ionic matrix provided a signal-to-noise ratio ten times higher than the corresponding molecular matrix. Several of the tested ionic matrices were liquids. However, all working ionic matrices were solids.  相似文献   

16.
Current analytical techniques in protein identification by mass spectrometry are based on the generation of peptide mass maps or sequence tags that are idiotypic for the protein sequence. This work reports on the development of the use of mass spectrometric methods for protein identification in research on metabolic pathways of a genetically modified strain of the baker's yeast Saccharomyces cerevisiae. This study describes the use of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass mapping and liquid chromatography/quadrupole time-of-flight electrospray ionization tandem mass spectrometry (LC/Q-TOF-ESI-MS/MS) sequence tag analysis in identification of yeast proteins separated by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). The spots were selected for analysis in order to collect information for future studies, to cover the whole pI range from 3 to 10, and to evaluate information from spots of different intensities. Mass mapping as a rapid, high-throughput method was in most cases sensitive enough for identification. LC/MS/MS was found to be more sensitive and to provide more accurate data, and was very useful when analyzing small amounts of sample. Even one sequence tag acquired by this method could be enough for unambiguous identification, and, in the present case, successfully identified a point mutation.  相似文献   

17.
The ability to rapidly identify the taxonomic class of the wide variety of microorganisms involved in human and animal disease is becoming increasingly important, especially with the increasing development of resistance to the antibiotics which form the main defence against them. A number of groups have recognised the utility of matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry MALDI-TOF in the analysis of these microorganisms. However, no consistent methodology has been developed which is in general use. In particular the use of different solvent extraction systems and mass spectrometric matrices can have significant effects on the quality of the data obtained. We have now studied a number of the commonly used matrices and a range of solvent systems of widely varying polarity in an attempt to devise an optimum analytical strategy for the rapid characterisation of these organisms by MALDI-TOFMS. The E. coli ATCC 9637 organisms were initially washed to remove growth medium contaminants, followed by extraction with one of a range of solvents prior to admixing with a number of different single matrices or binary and ternary combinations of these matrices. The results obtained indicate that a binary combination of 2-(4-hydroxyphenylazo)benzoic acid and 2-mercaptobenzothiazole (1:1) as matrix provides the best data after the proteinaceous material from the organism cell surface was extracted with 17% formic acid, 33% isopropyl alcohol and 50% water, (solvent 2 in this work).  相似文献   

18.
The use of plasma volume expanders, especially those based on chemically modified polysaccharides such as hydroxyethyl starch, has found its way from the medical field to the athletic community in the everlasting drive for performance enhancement. As such, plasma volume expanders have been placed on the list of banned substances by the International Olympic Committee, and in turn require accurate and sensitive analytical tools for their detection in complex biological matrices. Here we present a relatively straightforward method for the detection of polysaccharide-based plasma volume expanders (PVE) in urine, based on the carefully controlled partial acid hydrolysis of urine (20 microL) in a total volume of 500 microL 4 M trifluoroacetic acid. Following the incubation (30 min at 100 degrees C) an aliquot of the hydrolysate is dried, re-suspended in the analytical matrix (e.g. 2,5-dihydroxybenzoic acid) and examined by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS). The obtained mass spectrometric profile reveals a high number of characteristic peaks in the mass range between 500 and 3000 Da, a region that in urine samples devoid of PVE appears relatively clean, and thus allows the unambiguous identification of the presence of such PVE. This approach is fast (the mass profile can be obtained within 90 min), highly sensitive (the effective sample amount on the MALDI target is equivalent to 100 nL urine), needs little sample handling (four steps), requires no derivatisation and is devoid of interference from other biomolecules. The approach has been worked-out for hydroxy ethyl starch but can be applied to other polymer-derived plasma expanders such as dextran and probably the newly developed acetyl starch.  相似文献   

19.
A method earlier developed for the mass spectrometric (MS) identification of tetanus toxin (TTx) was applied to botulinum toxins type A and B (BTxA and BTxB). Botulinum toxins are extremely neurotoxic bacterial toxins, likely to be used as biological warfare agent. Biologically active BTxA and BTxB are comprised of a protein complex of the respective neurotoxins with specific haemagglutinins (HAs) and non-toxic non-haemagglutinins (NTNHs). These protein complexes are also observed in mass spectrometric identification. The particular BTxA complex, from Clostridium botulinum strain 62A, almost completely matched database data derived from genetic sequences known for this strain. Although no such database information was available for BTxB, from C. botulinum strain okra, all protein sequences from the complex except that of HA-70 were found to match proteins known from other type B strains. It was found that matrix-assisted laser desorption ionisation MS provides provisional identification from trypsin digest peptide maps and that liquid chromatography electrospray (tandem) mass spectrometry affords unequivocal identification from amino acid sequence information of digest peptides obtained in trypsin or pepsin digestion.  相似文献   

20.
Strains of certain plant pathogenic bacteria, in particular several pathovars of Pseudomonas syringae, are known to produce cyclic lipodepsipeptides (LDPs) endowed with peculiar structural features and noticeable biological activities. In this study, a mass spectrometry procedure is proposed for screening LDP-producing bacterial strains and for identifying and assessing individual LDPs. After matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) screening of thirteen P. syringae strains for LDP production, the extracts from culture filtrates of eight positive strains were subjected to electrospray mass spectrometry for the identification of LDPs. Five strains were found to produce two forms of syringomycins (SR-E and SR-G) and two forms of syringopeptin 25 (SP25A and SP25B); two strains produced SR-E, SR-G and a new form of SP22; one strain produced syringotoxin (ST) and syringostatin A (SS-A) in addition to SP25A and SP25B. The yield in culture of two major LPDs: SR-G (3.2-13.8 mg x L(-1)) and SP25A (41.6-231.5 mg x L(-1)) was assessed by and high-performance liquid chromatography with electrospray mass spectrometry (HPLC/ESI-MS) in both scan and single ion monitoring (SIM) modes. Results of this investigation showed that the mass spectrometry protocol developed here is a precise and reliable method for screening bacterial strains for LDP production and for assessing the amount of each metabolite under various culture conditions. This could be of practical value in view of potential applications, e.g. biocontrol of post-harvest fungal diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号