首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Detonation initiation resulting from the Richtmyer–Meshkov instability is investigated numerically in the configuration of the shock/spark-induced-deflagration interaction in a combustive gas mixture. Two-dimensional multi-species Navier–Stokes equations implemented with the detailed chemical reaction model are solved with the dispersion-controlled dissipative scheme. Numerical results show that the spark can create a blast wave and ignite deflagrations. Then, the deflagration waves are enhanced due to the Richtmyer–Meshkov instability, which provides detonation initiations with local environment conditions. By examining the deflagration fronts, two kinds of the initiation mechanisms are identified. One is referred to as the deflagration front acceleration with the help of the weak shock wave, occurring on the convex surfaces, and the other is the hot spot explosion deriving from the deflagration front focusing, occurring on the concave surfaces. The project supported by the National Natural Science Foundation of China (90205027 and 10632090).  相似文献   

2.
A non-linear rate-type constitutive equation, established by Rajagopal, provides a generalization of the Maxwell fluid. This note embodies such a constitutive equation within the scheme of materials with internal variables thus allowing also for solids with both dissipative and thermoelastic mechanisms. The compatibility with the second law of thermodynamics, expressed by the Clausius–Duhem inequality, is examined and the restrictions on the evolution equations are determined. Next the propagation condition of discontinuity waves is derived, for shock waves and acceleration waves, by regarding the body as a definite conductor. Infinitesimal shock waves and acceleration waves show similar effects. The effective acoustic tensor proves to be the sum of a thermoelastic tensor and a tensor arising from the rate-type equation.  相似文献   

3.
The decelerating effect of a homogeneous gravity field on the plane shock wave acceleration near the outside surface of a gas layer, initially in equilibrium, is analyzed within the framework of the self-similar formulation. A qualitative investigation is performed, the cases in which the first integrals exist are noted, and certain exact solutions of the problem are obtained at different power laws of the initial density variation.  相似文献   

4.
The dynamical behavior of fluids affected by the asymmetric gravity gradient acceleration is studied. In particular the effect of surface tension on partially liquid filled rotating fluids applicable to a full-scale Gravity Probe-B Spacecraft dewar tank with and without a baffle have been investigated. Results of slosh wave excitation along the liquid-vapor interface induced by gravity gradient acceleration indicate that the gravity gradient acceleration is equivalent to the combined effect of a twisting force and torsional moment acting on the spacecraft. As viscous force (between liquid and solid interface), and surface tension force (between liquid-vapor-solid interface) greatly contribute to the damping effect of slosh wave excitation, a rotating dewar with baffle provides more areas of liquid-solid and liquid-vapor-solid interfaces than that of a rotating dewar without baffle. Results show that the damping effect provided by the baffle reduces the amplitude of slosh wave excitation, lowers the fluid force, torque, and the moment arm of fluid torque fluctuations than that without baffle, and also lowers the degree of asymmetry in the liquid-vapor distribution.  相似文献   

5.
The propagation of weak shock waves and the conditions for their existence in a gas-liquid medium are studied in [1]. The article [2] is devoted to an examination of powerful shock waves in liquids containing gas bubbles. The possibility of the existence in such a medium of a shock wave having an oscillatory pressure profile at the front is demonstrated in [3] based on the general results of nonlinear wave dynamics. It is shown in [4, 5] that a shock wave in a gas-liquid mixture actually has a profile having an oscillating pressure. The drawback of [3–5] is the necessity of postulating the existence of the shock waves. This is connected with the absence of a direct calculation of the dissipative effects in the fundamental equations. The present article is devoted to the theoretical and experimental study of the structure of a shock wave in a gas-liquid medium. It is shown, within the framework of a homogeneous biphasic model, that the structure of the shock wave can be studied on the basis of the Burgers-Korteweg-de Vries equation. The results of piezoelectric measurements of the pressure profile along the shock wave front agree qualitatively with the theoretical representations of the structure of the shock wave.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 65–69, May–June, 1973.  相似文献   

6.
J. Jena  Randheer Singh 《Meccanica》2013,48(3):733-738
In this paper, the evolution of an acceleration wave and a characteristic shock for the system of partial equations describing one dimensional, unsteady, axisymmetric motion of transient pinched plasma has been considered. The amplitude of the acceleration wave propagating along the characteristic associated with the largest eigenvalue has been evaluated. The interaction of the acceleration wave with the characteristic shock has been investigated. The amplitudes of the reflected and transmitted waves and the jump in the shockwave acceleration after interaction are evaluated.  相似文献   

7.
环形激波绕射, 反射和聚焦的数值模拟研究   总被引:9,自引:0,他引:9  
应用频散可控耗散格式对环形激波在圆柱形激波管内绕射、反射和聚焦的问题进行了数值模拟研究,研究结果表明环形激波形成强烈聚焦的关键因素是环形激波在圆柱形管道中向对称轴运动时,绕射激波就不断加速而不作通常情况下的衰减;不同马赫数的环形激波绕射也产生不同马赫数及形状的准柱形激波,导致聚焦效果和位置的差异;另外,环形激波聚焦于一个点而圆柱形激波聚焦于一条线,两者有本质不同。  相似文献   

8.
In this study, the interaction of a planar shock wave with a group of particles has been investigated using high-speed photography and dynamic pressure measurements. Experiments were carried out in a horizontal circular shock tube. The influence of the particle loading ratio, particle diameter, driving gas and shock wave Mach number on the acceleration was studied. It was found that the higher the particle loading ratio, the greater was the particle velocity. This is due to the higher driving pressure. Helium and nitrogen gases play quite different roles in acceleration. Pressure multiplication during shock wave interaction with particles also appears. Based on the experimental results, the discussion regarding partial quantitative velocities and accelerations of particle groups, as well as the attenuation factors when shock waves pass through the particles, is given.  相似文献   

9.
The explicit expressions for the change in the amplitudes of one-dimensional acceleration and shock waves propagating through arbitrary homogeneous materials described by the strain and internal state variables/parameters/are derived. The existence of a critical amplitude β for the acceleration wave and a critical strain gradient λ for the shock wave is established. For an infinitesimal shock wave the general form of the solution of the governing differential equation is furnished. The differential equations for the amplitudes of these two kind of waves are applied to an elastic-viscoplastic material.  相似文献   

10.
In this paper we examine the behavior of the induced discontinuities behind curved longitudinal and transverse shock waves in isotropic linear elastic materials. It is shown that in either case the governing differential equation of the induced discontinuity differs from that of the shock amplitude. The latter depends linearly on the second fundamental form of the shock surface and exhibits purely geometrical effects. The former, however, depends non-linearly on the second fundamental form of the shock surface, and on the shock amplitude. These terms are dominant for a strong shock and their effects diminish as the shock weakens. In particular, the governing differential equation for an acceleration wave is obtained in the limit as the shock amplitude vanishes. The results obtained are quite unexpected, and they demonstrate the complex evolutionary behavior of mechanical waves due to geometrical considerations alone.  相似文献   

11.
DISSIPATIVEEFFECTSOFANISOLATEDBUBBLEINWATERONTHESOUNDWAVEHunagJing-quan(黄景泉)LiFu-xin(李福新)(NorthwesternPolytechnicUniversity,X...  相似文献   

12.
A meshless method – The Least Square Finite Difference scheme (LSFD) with diffusion is analyzed and applied to inviscid flows. The scheme is made second-order by using a modified difference in the formulation of LSFD. Several numerical experiments, namely the Sod shock tube and the shallow water problems, are carried out and, in the limelight of the results obtained, the ability of the scheme to resolve shock wave, rarefaction wave, and contact discontinuity is discussed. The conditional stability of the LSFD scheme is established. The LSFD uses weights to diagonalize the least square matrix resulting in the spatial discretization in order to gain computational time. We prove that there exists a unique weight for the resulting optimization problem. The weighted version of LSFD is used to solve the isentropic vortex problem numerically and the results are used to discuss the dissipative nature of the scheme. Five configurations of the two-dimensional Riemann problems are used in our numerical experiments. The capability of the scheme to capture the complex interaction of multiple planar waves is discussed in the limelight of the results on the Riemann problems. The result of the shock reflection problem shows that the scheme is minimally dissipative and leads to sharp and well-resolved shocks.  相似文献   

13.
On the basis of numerical modeling specific features of shock wave reflections were analyzed. It was found, that after diaphragm rupture self-modeling pressure and velocity distributions nearby the shock front establish. But in some special cases the temperature behind the shock front can rise. This peculiarity should be taken into account when performing experiments with high reactive gaseous mixtures. The temperature on the shock front and the velocity gradient behind it are uniform in the case of strong blast wave reflections. This effect is observed in the zone with an elevated temperature profile behind the incident blast wave. The reflected triangular waves conserve a quasi-self-modeling character by pressure. Typical experiments were carried out to verify the theoretical predictions. The effects of reflected wave acceleration in the case of triangular waves and the self-similar character of the pressure profiles were observed.This article was processed using Springer-Verlag TEX Shock Waves macro package 1.0 and the AMS fonts, developed by the American Mathematical Society.  相似文献   

14.
Shock wave formation and acceleration in a high-aspect ratio cross section shock tube were studied experimentally and numerically. The relative importance of geometric effects and diaphragm opening time on shock formation are assessed. The diaphragm opening time was controlled through the use of slit-type (fast opening time) and petal-type (slow opening time) diaphragms. A novel method of fabricating the petal-type diaphragms, which results in a consistent burst pressure and symmetric opening without fragmentation, is presented. High-speed schlieren photography was used to visualize the unsteady propagation of the lead shock wave and trailing gas dynamic structures. Surface-mounted pressure sensors were used to capture the spatial and temporal development of the pressure field. Unsteady Reynolds-Averaged Navier–Stokes simulation predictions using the shear-stress-transport turbulence model are compared to the experimental data. Simulation results are used to explain the presence of high-frequency pressure oscillations observed experimentally in the driver section as well as the cause of the initial acceleration and subsequent rapid decay of shock velocity measured along the top and bottom channel surfaces. A one-dimensional theoretical model predicting the effect of the finite opening time of the diaphragm on the rate of driver depressurization and shock acceleration is proposed. The model removes the large amount of empiricism that accompanies existing models published in the literature. Model accuracy is assessed through comparisons with experiments and simulations. Limitations of and potential improvements in the model are discussed.  相似文献   

15.
Summary The growth and decay of a weak discontinuity headed by a singular surface of arbitrary shape in three dimensions is investigated in a chemically reacting atmosphere, in the absence of dissipative mechanisms such as viscosity, diffusion and heat conduction. The combined effects of the disequilibrium due to the chemical reaction and a wave front curvature on the propagation of discontinuities have been examined and discussed. It has been observed that the chemical disequilibrium, with its Arrhenius rate dependence, causes the compression wave to steepen more swiftly that it does in an inert atmosphere. The critical values of the initial discontinuity, and time for shock formation, in cases of diverging and converging waves, have been determined.  相似文献   

16.
采用自研的高保真度爆轰与冲击动力学程序,对柱形汇聚几何中内爆驱动金属材料界面不稳定性的动力学行为,进行了数值模拟研究。结果表明,首次冲击后至约12 μs,界面发展以RM(Richtmyer-Meshkov)不稳定性为主;12 μs后至冲击波聚心反弹加载前,界面聚心运动处于加速减速状态,界面发展由RT (Rayleigh-Taylor)不稳定性主导;冲击波聚心反弹加载后,界面发展又由RM不稳定性主导。另外,还研究了初始条件(初始振幅、初始波长、钢壳初始厚度和几何构型)对柱形内爆驱动金属材料界面不稳定性的影响。结果显示:初始振幅较大时振幅增长也较大;初始波长较小(模数较大)时振幅增长较小,而且存在一个截止波长;钢壳厚度会抑制扰动增长,也存在一个截止厚度;几何汇聚效应会使扰动增长速度更快。  相似文献   

17.
The effects of large amplitudes and initial deformations on shock waves and acceleration waves propagating in fiber-reinforced laminated plates are investigated. Three cases are discussed, namely the large amplitude shock under initial in-plane deformations, small amplitude waves under in-plane deformations, and small amplitude waves propagating in a plate with large deflection. It is found that the in-plane force has a substantial effect on the transverse shear mode but little effects on other modes. The large initial deflection, however, is found to have considerable effects on all modes. A general procedure for constructing the wave surfaces is also presented.  相似文献   

18.
Behavior of detonation waves at low pressures   总被引:1,自引:0,他引:1  
With respect to stability of gaseous detonations, unsteady behavior of galloping detonations and re-initiation process of hydrogen-oxygen mixtures are studied using a detonation tube of 14 m in length and 45 mm i.d. The arrival of the shock wave and the reaction front is detected individually by a double probe combining of a pressure and an ion probe. The experimental results show that there are two different types of the re-initiation mechanism. One is essentially the same as that of deflagration to detonation transition in the sense that a shock wave generated by flame acceleration causes a local explosion. From calculated values of ignition delay behind the shock wave decoupled from the reaction front, the other is found to be closely related with spontaneous ignition. In this case, the fundamental propagation mode shows a spinning detonation. Received 10 March 1997 / Accepted 8 June 1997  相似文献   

19.
李芳芳  薛琨  白春华 《实验力学》2013,28(3):290-298
为了得到竖直振动颗粒床形成对流的运动模式及形成机制,本文通过高速摄影技术对竖直振动颗粒床进行了实验研究。实验发现,随着振动加速度的增加,对流环覆盖的粒子层数和强度明显增加。通过分析颗粒速度矢量图的演化,可以获得控制对流运动的各种应力波在在粒子床中传播的信息,发现应力波的强度和持续时间与振动加速度密切相关。通过实验发现,对流运动发端于重力波面上粒子从侧壁向粒子床中心的不可逆跃迁,这种横向对流的强度与重力波面的曲率密切相关,而持续的时间随粒子床振动周期的变化而变化。  相似文献   

20.
A one-dimensional problem of shock wave acceleration in a uniform gravitational field is exactly solved. In front of the shock wave, the medium state is initially in equilibrium and its density decreases according to a power law. The shock wave is generated using a piston moving freely in the gravitational field. The adiabatic index is assumed to be equal to 3. The obtained solution is represented in terms of elementary functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号