首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An attempt has been made to examine FA(Ga+,In+,Tl+) tunable laser activity and adsorptivity of halogen atoms (F,Cl,Br,I,At) at the (0 0 1) surface of KCl crystal using an embedded cluster model, CIS and density functional theory calculations with effective core potentials. The ion clusters were embedded in a simulated Coulomb field that closely approximates the Madelung field at the host surface. The nearest neighbor ions to the defect site were then allowed to relax to equilibrium. Based on the calculated strength of electron–phonon coupling and Stokes-shifted optical transition bands, The FA(Tl+) center was found to be the most laser active in agreement with the experimental observation that the optical emissions of FA(In+) and FA(Ga+) centers were strongly quenched. The disappearance of the anisotropy and np splitting observed in the absorption of FA(Ga+,In+,Tl+) centers were monotonically increasing functions of the size of the impurity cation. The FA(Ga+,In+,Tl+) defect formation energies followed the order FA(Ga+)>FA(In+)>FA(Tl+). The Glasner–Tompkins empirical relationship between the principal optical absorption of F centers in solids and the fundamental absorption of the host crystal was generalized to include the positive ion species. As far as the adsorptivity of the halogen atoms is concerned, the F and FA(In+,Tl+) centers were found to change the nature of adsorption from physical adsorption to chemical adsorption. The adsorption energies were monotonically increasing functions of the electronegativity of the halogen and the amount of charge transferred from the defect-free surface. The calculated adsorption energies were explainable in terms of the electron affinity, the effective nuclear charge and the electrostatic potentials at the surface. The spin pairing mechanism played the dominant role in the course of adsorbate–substrate interactions and the KCl defect-free surface can be made semiconducting by F or FA(In+,Tl+) surface imperfections.  相似文献   

2.
Photoluminescence and photoluminescence excitation spectroscopy on Ga.47In.53As multi quantum wells confined either by homogenous ternary Al.48In.52As barriers or by Ga.47In.53As/Al.48In.52As short-period superlattice (SPS) barriers show that the confinement by SPS barriers improves the edge luminescence significantly. The spectral width of the free-exciton absorption and the low-temperature emission peak as well as the Stokes-shift between emission and excitation spectra are reduced as compared to samples clad by homogenous ternary Al.48In.52As barriers. Based on temperature-dependent emission and excitation measurements, the dominant low-temperature emission line in the SPS-clad Ga.47In.53As multi quantum wells is assigned to intrinsic excitonic recombination.  相似文献   

3.
The orientation parameter A10 and the alignment parameter A20 have been calculated for the single photoionization of the closed-shell cations Na+, Al+, K+, Cu+, Ga+, Rb+, Ag+, In+, Cs+, Au+, Tl+ and Fr+ where all possible vacancies from 2p1/2 up to 6p3/2 have been investigated. The calculations have been performed by employing a relaxed-orbital method within a single-configurational Hartree–Fock approach where mass–velocity and Darwin corrections have been incorporated into the non-relativistic approach. To cover the range of a possibly occurring Cooper minimum kinetic energies of the emitted photoelectron up to at least 20 Ry (≈ 272 eV) have been considered. The results are compared with the orientation and alignment parameters of the respective singly photoionized isoelectronic atoms to underline differences in the strength of repulsive barriers and in the energetic position of shape resonances and Cooper minima.  相似文献   

4.
We observed that a series of peaks, which were clearly extracted from a photocurrent difference spectrum, corresponded to interband optical transitions of an In0.53Ga0.47As /In0.52Al0.48As multi-quantum wells structure. The nonparabolic tendency of the electron effective mass was suggested from eigenenergies of conduction subbands. The effective mass estimated in a direction normal to the InGaAs quantum well plane was heavier than the effective mass of the bulk band edge and was 0.07 m0at the top of a quantum potential well.  相似文献   

5.
High-quality and uniform bulk layers of (Al x Ga1–x )0.5In0.5P (x=0–0.7) and AlGalnP/GainP quantum wells (QWs) are grown on 2°-off (100) GaAs substrates by low-pressure metal organic vapour phase epitaxy at a low growth rate of 0.3 nm s-1. The amount of lattice mismatch and the variation of PL peak energy of (Al0.5Ga0.5)0.5In0.5P on the 50-mm substrate are less than 6×10-4 and 2 meV, respectively. (Al0.5Ga0.5)0.5In0.5P/Ga0.5In0.5P SQWs show narrow PL spectra even from a 0.6 nm well measured at 20 K. The variation of PL peak energy from (Al0.5Ga0.5)0.5In0.5P/Ga0.5In0.5P MQWs is less than 10 meV. Also, as-cleaved AlGalnP/GalnP lasers fabricated by a three-step MOVPE show a pulsed threshold current of 82 mA at room temperature, output power of 12 mW, and the lasing wavelength at 668.2 nm.  相似文献   

6.
AlxInyGa1?x?yN quaternary alloys with different ratios of Al/In were grown by metal-organic chemical vapor deposition on GaN/Al2O3 substrates. The structural and emission properties of the as-grown samples were investigated, respectively, by high-resolution X-ray diffraction and photoluminescence (PL) measurements. The PL emission character is related to the two prominent quenching bands, which have been determined to be located at around 1.1 eV and 1.7 eV above the valence band, respectively, by the method of optical quenching of photoconductivity. PL emission is most intense when the Al/In ratio is 7.5 for the AlxInyGa1?x?yN layer. In addition, a stronger quenching phenomenon with Al/In ratio of 5.0 in AlxInyGa1?x?yN is observed in accordance with a reduction of the intensity of AlxInyGa1?x?yN-related emission peak.  相似文献   

7.
《Current Applied Physics》2015,15(11):1337-1341
The chemical states of ternary post-transition metal oxide thin films of InGaO, GaZnO and InZnO were investigated using X-ray photoelectron spectroscopy. Detailed binding energy (BE) analyses revealed certain evolution in chemistry in the ternary oxides compared to the reference binary oxides of In2O3, ZnO, or Ga2O3. In particular, O 1s BEs were changed with the compositions, which suggests that the charge transfer (CT) between In3+/Ga3+/Zn2+ and O2− ions is significant. Results of extended X-ray absorption fine structure analyses further showed that the first shell coordination (cation–O bond) is roughly maintained even though the ternary oxide films were structurally disordered. This implies that the CT process via O2− ions can influence the charge reconstructions in the ternary oxide systems.  相似文献   

8.
Modeling of the valence band discontinuity was proposed with Harrison model modified by introducing the effective bond length for AlX (X = P, As, Sb). The valence band discontinuity of heterostructures including AlX as constituent, for example, GaAs/AlxGa1−xAs and AlxIn11−xAs/ InxGa1−xAs, was predicted. The predicted values were in good agreement with the experimental values, different from ordinary Harrison model. Prediction of the valence band discontinuity of quarternary alloy (AlxGa1−x)y In1−yP lattice matched to GaAs was also attempted.  相似文献   

9.
The effects of the In-mole fraction (x) of an InxGa1−xN back barrier layer and the thicknesses of different layers in pseudomorphic AlyGa1−yN/AlN/GaN/InxGa1−xN/GaN heterostructures on band structures and carrier densities were investigated with the help of one-dimensional self-consistent solutions of non-linear Schrödinger-Poisson equations. Strain relaxation limits were also calculated for the investigated AlyGa1−yN barrier layer and InxGa1−xN back barriers. From an experimental point of view, two different optimized structures are suggested, and the possible effects on carrier density and mobility are discussed.  相似文献   

10.
The excitonic transitions between the ground electron and hole quantum well sublevels in strained InxGa1-xAs-AlyGa1-yAs multiple quantum well structures (x = 0.12−0.35 and y = 0.2−0.35) have been investigated by means of photoluminescence and photoconductivity measurements. The molecular beam epitaxy grown structures contained an AlyGa1-yAs matrix with one unstrained GaAs and three strained InxGa1-xAs quantum wells one of which was in the GaAs cladding layers. The ratio of the conduction band edhe line up to the band gap offset for the strained InxGa1-xAs-unstrained AlyGa1-yAs interface has been found to be 0.67 ± 0.08 for the studied regions of x and y.  相似文献   

11.
The removal of the native oxides from the In0.53Ga0.47As surface by exposure to atomic hydrogen has been investigated by highly surface sensitive synchrotron radiation based photoelectron spectroscopy. This shows that it is possible to fully remove the arsenic oxides at low temperatures, while still leaving a low concentration of stable Ga2O and In2O at the surface, and no evidence of indium loss from the substrate. The removal of surface carbon contamination is also seen, however full removal is only detected in the absence of prior substrate annealing. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Transmission electron microscopy (TEM) and photocurrent (PC) measurements were carried out to investigate the microstructural and excitonic transitions in In0.52Ga0.48As/In0.55Al0.45As multiple quantum wells (MQWs). TEM images showed that high-quality 11-period strain-compensated In0.52Ga0.48As/In0.55Al0.45As MQWs had high-quality heterointerfaces. Based on the TEM results, a possible crystal structure for the In0.52Ga0.48As/In0.55Al0.45As MQWs is presented, and their strains are compensated. The results for the PC data at 300 K for several applied electric fields showed that several excitonic transitions shifted to longer wavelengths as the applied electric field increased. These results indicate that the strain-compensated In0.52Ga0.48As/In0.55Al0.45As MQWs hold promise for electroabsorption modulator devices.  相似文献   

13.
《Current Applied Physics》2019,19(5):557-562
Influence of Ga(Al)As substrates on surface morphology of InGaAs quantum dots and critical thickness of In0.5Ga0.5As film grown by molecular beam epitaxy is investigated. The In0.5Ga0.5As quantum dots are grown on (001) surfaces of GaAs and Al0.25Ga0.75 A at 450 °C, scanning tunneling microscope images show that the size of quantum dots varied slightly for 10 ML of In0.5Ga0.5As grown on GaAs and Al0.25Ga0.75As surfaces. Reflection high energy electron diffraction (RHEED) is used to monitor the growth of 4 monolayers (ML) In0.5Ga0.5As on Al0.25Ga0.75As and GaAs surfaces during deposition. The critical thickness is theoretically calculated by adding energy caused by surface roughness and heat from substrate. The calculations show that the critical thickness of In0.5Ga0.5As grown on GaAs and Al0.25Ga0.75As are 3.2 ML and 3.8 ML, respectively. The theoretical calculation agrees with the experimental results.  相似文献   

14.
宋杰  许福军  黄呈橙  林芳  王新强  杨志坚  沈波 《中国物理 B》2011,20(5):57305-057305
The temperature dependence of carrier transport properties of AlxGa1-xN/InyGa1-yN/GaN and AlxGa1-xN/GaN heterostructures has been investigated.It is shown that the Hall mobility in Al0.25Ga0.75N/In0.03Ga0.97N/GaN heterostructures is higher than that in Al0.25Ga0.75N/GaN heterostructures at temperatures above 500 K,even the mobility in the former is much lower than that in the latter at 300 K.More importantly,the electron sheet density in Al0.25Ga0.75N/In0.03Ga0.97N/GaN heterostructures decreases slightly,whereas the electron sheet density in Al0.25Ga0.75N/GaN heterostructures gradually increases with increasing temperature above 500 K.It is believed that an electron depletion layer is formed due to the negative polarization charges at the InyGa1-yN/GaN heterointerface induced by the compressive strain in the InyGa1-yN channel,which e-ectively suppresses the parallel conductivity originating from the thermal excitation in the underlying GaN layer at high temperatures.  相似文献   

15.
A. A. Dubinov 《JETP Letters》2013,97(5):245-248
The possibility of the creation a green-wavelength laser has been theoretically examined. The gain and threshold current density in the laser based on a (Al0.5Ga0.5)0.49In0.51P/(Al0.6Ga0.4)0.49In0.51P double hetero-structure have been calculated. It has been shown that, at a sufficiently high doping of an active region with an n-type impurity, the minimum threshold current density is reached when the coefficient of the eeh process of Auger recombination is larger than the coefficient of the ehh process.  相似文献   

16.
The chemical properties of AlxGa1−xN surfaces exposed to air for different time periods are investigated by atomic force microscopy (AFM), photoluminescence (PL) measurement and X-ray photoelectron spectroscopy (XPS). PL and AFM results show that AlxGa1−xN samples exhibit different surface characteristics for different air-exposure times and Al contents. The XPS spectra of the Al 2p and Ga 2p core levels indicate that the peaks shifted slightly, from an AlN to an AlO bond and from a GaN to a GaO bond. All of these results show that the epilayer surface contains a large amount of Ga and Al oxides.  相似文献   

17.
Raman and Fourier transform infrared (FTIR) spectroscopies have been utilized to measure long-wavelength optical lattice vibrations of high-quality quaternary AlxInyGa1−x−yN thin films at room temperature. The AlxInyGa1−x−yN films were grown on c-plane (0 0 0 1) sapphire substrates with AlN as buffer layers using plasma assisted molecular beam epitaxy (PA-MBE) technique with aluminum (Al) mole fraction x ranging from 0.0 to 0.2 and constant indium (In) mole fraction y=0.1. Pseudo unit cell (PUC) model was applied to investigate the phonons frequency, mode number, static dielectric constant, and high frequency dielectric constant of the AlxInyGa1−x−yN mixed crystals. The theoretical results were compared with the experimental results obtained from the quaternary samples by using Raman and FTIR spectroscopies. The experimental results indicated that the AlxInyGa1−x−yN alloy had two-mode behavior, which includes A1(LO), E1(TO), and E2(H). Thus, these results are in agreement with the theoretical results of PUC model, which also revealed a two-mode behavior for the quaternary nitride. We also obtained new values of E1(TO) and E2(H) for the quaternary nitride samples that have not yet been reported in the literature.  相似文献   

18.
Photoluminescence and cathodoluminescence measurements of strained undoped In0.15Ga0.85As/GaAs and In0.15Ga0.85As/Al0.15Ga0.85As quantum well structures with emission lines attributed to the first electron–first heavy hole and first electron–first light hole excitonic transitions have been analysed theoretically within the eight-band effective mass approximation. For In0.15Ga0.85As/GaAs the results are consistent with either type I or type II alignment of the light hole band. In the case of In0.15Ga0.85As/Al0.15Ga0.85As our results indicate type II alignment for the light hole band and offset ratio ofQ = 0.83.  相似文献   

19.
Quaternary n-type Al0.08In0.08Ga0.84N grown on p-Si using molecular beam epitaxy technique was fabricated as a pn-junction and an anti-reflection coating (ARC) of solar cells. The structural properties and surface morphology of the solar cells were investigated using scanning electron and atomic force microscopy. Optical reflectance was obtained using an optical reflectometery system (Filmetric F20-VIS). Current–voltage characteristics were examined under 100 mW cm?2 illumination conditions. Quaternary n-type Al0.08In0.08Ga0.84N coating was found to be an excellent ARC against incident light compared with other ARCs. This material also exhibited good light trapping over a wide wavelength spectrum, which produced highly efficient solar cells. The unique and strong polarization, as well as the piezoelectric effect, of the quaternary-nitrides was employed to reduce surface recombination velocities and enhance the solar cell performance. A solar cell with reasonable conversion efficiency of 9.74% was obtained when the n-Al0.08In0.08Ga0.84N/p-Si was employed.  相似文献   

20.
The band structure, density of states of AlxGa1?xN and InyGa1?yN was performed by the first-principles method within the local density approximation. The calculated energy gaps of the AlN, Al0.5Ga0.5N, GaN, In0.5Ga0.5N and InN were 5.48, 4.23, 3.137, 1.274 and 0.504 eV, which were in agreement with the experimental result. The dielectric functions, absorption coefficient and loss function were calculated based on Kramers–Kronig relations. Further more, the relationships between electronic structure and optical properties were investigated theoretically. For AlxGa1?xN and InyGa1?yN materials, the micromechanism of the optical properties were explained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号