首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A series of luminescent ion exchanged zeolite are synthesized by introducing various ions into NaY zeolite. Monometal ion (Eu3+, Tb3+, Ce3+, Y3+, Zn2+, Cd2+, Cu2+) exchanged zeolite, rare‐earth ion (Eu3+, Tb3+, Ce3+) exchanged zeolite modified with Y3+ and rare‐earth ion (Eu3+, Tb3+, Ce3+) exchanged zeolite modified with Zn2+ are discussed here. The resulting materials are characterized by Fourier transform infrared spectrum radiometer (FTIR), XRD, scanning electronic microscope (SEM), PLE, PL and luminescence lifetime measurements. The photoluminescence spectrum of NaY indicates that emission band of host matrix exhibits a blueshift of about 70 nm after monometal ion exchange process. The results show that transition metal ion exchanged zeolites possess a similar emission band due to dominant host luminescence. A variety of luminescence phenomenon of rare‐earth ion broadens the application of zeolite as a luminescent host. The Eu3+ ion exchanged zeolite shows white light luminescence with a great application value and Ce3+ exchanged zeolite steadily exhibits its characteristic luminescence in ultraviolet region no matter in monometal ion exchanged zeolite or bimetal ions exchanged zeolite.  相似文献   

2.
In the present study, non-conventional solid acid catalysts such as NaY, metal ion exchanged zeolite NaY (Zn2+, Fe3+, Ce3+, La3+ and Nd3+), H-mordenite, H-β and HZSM-5 were used in order to overcome the disadvantages of conventional Friedel-Crafts catalysts for the acylation of anisole with acetic anhydride. Among the various zeolites studied, the HY zeolite shows an intermediate activity. Zeolite containing transition metal ions (Zn2+ and Fe3+) are less active and zeolite NaY is nearly inactive. The catalysts exhibit the activity in the order H-β>transition metal ions (Zn2+ and Fe3+)>HY>NaY zeolite. The highest catalytic activity of H-β could be due to its larger pore size. The type of acidity and the acid strength in zeolite Y were determined by FTIR and differential scanning calorimetric (DSC) studies on the pyridine adsorbed catalysts. The correlation of catalytic activity with acidity reveals that Brönsted acid sites in zeolite promote the acylation of anisole.  相似文献   

3.
Zeolites are nanoporous alumina silicates composed of silicon, aluminum, and oxygen in a framework with cations, water within pores. Their cation contents can be exchanged with monovalent or divalent ions. In the present study, the antimicrobial (antibacterial, anticandidal, and antifungal) properties of zeolite type X and A, with different Al/Si ratio, ion exchanged with Ag+, Zn2+, and Cu2+ ions were investigated individually. The study presents the synthesis and manufacture of four different zeolite types characterized by scanning electron microscopy and X-ray diffraction. The ion loading capacity of the zeolites was examined and compared with the antimicrobial characteristics against a broad range of microorganisms including bacteria, yeast, and mold. It was observed that Ag+ ion-loaded zeolites exhibited more antibacterial activity with respect to other metal ion-embedded zeolite samples. The results clearly support that various synthetic zeolites can be ion exchanged with Ag+, Zn2+, and Cu2+ ions to acquire antimicrobial properties or ion-releasing characteristics to provide prolonged or stronger activity. The current study suggested that zeolite formulations could be combined with various materials used in manufacturing medical devices, surfaces, textiles, or household items where antimicrobial properties are required.  相似文献   

4.
For the first time, effects of CuO nanoparticles concentration (from 1 to 24.2 wt%) in CuO/NaX nanocomposite and replacing various cations (Ag+, K+, Ca2+, and Mg2+) with Na+ ions in NaX zeolite on removal of uranium ions from drinking water are reported. The removal of uranium was performed under natural conditions of pH, laboratory temperature and the presence of competing cations and anions that are available in tap water of Isfahan city. Characterization of parent NaX zeolite and modified samples were investigated using X-ray fluorescence, X-ray powder diffraction patterns, scanning electron microscopy, and atomic absorption spectroscopy methods. Using Langmuir, Freundlich, and C-models, isotherms of equilibrium adsorption were studied. Results show the removal efficiency and distribution coefficient of NaX zeolite decrease in the presence of other competing anions and cations that exist in drinking water. But, modification of NaX zeolite with various cations and CuO nanoparticles might enhance the ability of X zeolite in removing uranium from drinking water.  相似文献   

5.
Removal of Cr3+,Ca2+,Mg2+ and K+ in equilibrium isotherms and in tricomponent solutions (Cr/Ca/K, Cr/Ca/Mg and Cr/Mg/K) were investigated in NaX and NaY packed beds at 30C. The equilibrium selectivity was obtained as Cr+3 > Mg2+ > Ca2+≈K+ for zeolite NaY and Ca2 +≫Cr3 + > Mg2 +≈K+ for zeolite NaX. The breakthrough curves showed sequential ion exchange where chromium ions are able to replace the competing cations. Some mass transfer parameters, such as length of unused bed and overall mass transfer coefficient, were investigated. Chromium retention was also investigated through a mass balance. Based on the breakthrough results, it was concluded that chromium-uptake mechanism was hardly influenced by the competition and interaction between the entering ions. NaY showed a higher affinity towards Cr3+ for both equilibrium and dynamic systems and its sites were more efficiently used in the ion exchange process. Chromium was less retained in NaX due to the high selectivity towards calcium ions.  相似文献   

6.
The mordenite samples loaded with divalent nitrates of Mn, Co, Ni, Cu, Zn and Cd were investigated using FTIR and scanning electron microscopy (SEM) methods. It was found from FTIR spectra that in 3000-4000 cm−1 region of mordenite samples with similar water concentration ions, Mn2+, Co2+, Cu2+, and Zn2+ tend to break hydrogen bonds formed between water molecules and zeolite framework, whereas Ni2+ and Cd2+ accommodate to hydrogen bonds. From SEM results it was concluded, that ions Mn2+, Co2+, Zn2+ form innersphere complexes with oxygens from Brönsted acid sites, whereas Ni2+ and Cd2+ associate with Brönsted acid sites without exchange of protons.  相似文献   

7.
Competitive uptake of Cs+, Ba2+ and Zn2+ ions from aqueous medium by zeolite-3A is studied by the radiotracer technique. Suppression Cs+ uptake in presence of Ba2+ is the maximum amongst the competitive uptakes. The simultaneous uptakes of the individual cations are considered in the light of the zeolite pore size, hydration effects and mobilities of the competing cations.  相似文献   

8.
Co2+ ion exchange, at room temperature, from aqueous cobalt — sodium chloride solutions with NaY zeolite has been studied. The effect of contact time on the shape of the sorption curves of Co2+ using zeolite Y dehydrated at 600°C is similar to the one found in our previous work with a zeolite dehydrated at 150 °C. A fast sorption uptake is observed in which 1.8 meq of Na+ ions/g of zeolite are replaced by cobalt ions followed by a desorption process where the uptake decreases to 1.2 meq/g zeolite. The Co2+ sorption using zeolite Y dehydrated at 600 °C is increased when ethylenediamine solution is passed through the zeolite. The Co2+ sorption uptake, initially 2.0 meq/g, incrases to 2.8 meq/g of zeolite. This behavior is explained by the location and coordination of cobalt in zeolite Y sites. It is suggested that the highest uptake process is due to the blocking of zeolite sites by a Co complex compound.  相似文献   

9.
The adsorption of naturally occurring radionuclides (UO2 2+, Tl+, Pb2+, Ra2+, Bi3+ and Ac3+) onto zeolite (Z) and polyacrylamide-zeolite composite (PAA-Z) and its modified composition by phytic acid (Z-Phy and PAA-Z-Phy) were investigated. Adsorption parameters were derived from the Langmuir and Freundlich fits to adsorption isotherms of the ions studied. The adsorption isotherms were of L and H types. The adsorption capacity of Z decreased by PAA inclusion, but the Phy modification of PAA-Z increased the capacity back to that of Z. The Phy modification made the adsorption spontaneity at least ten times better than in the absence of Phy. This investigation showed that the zeolite, as one of the most abundant natural materials and commonly used adsorbent can also be used for the removal of UO2 2+ and, in the PAA-Z form, of the studied radionuclides. The usage of Z, as PAA-Z and its Phy modification provide research materials which possess adequate practicality and effectiveness in studies of adsorption. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
The ion exchange between60Co2+ ions contained in residual radioactive water and zeolites of the NaA, NaX and CaA types was studied. The more advanced retaining of60Co2+ ions occurs for the NaA zeolite with the higher exchange capacity, as compared to NaX. With the CaA zeolite, a very weak ion exchange with60Co2+ ions was observed.  相似文献   

11.
Zeolite types A and P1 containing Co2+ dopant ions were synthesized. Using the methods of optical electron spectroscopy and structural-sorption analysis it is shown that the Co2+ ions are localized in the exchange positions of the type-A zeolite and are occluded in its cavities in the form of insoluble compounds of the cobalt silicate type. In the structure of P1-type zeolite the Co2+ ions not only occupy exchange positions, but enter the Si(Al)-O anion lattice. Co2+ Si4+(Al3+) isomorphism leads to significant changes in the vibrational spectra of the zeolite in the region of the Si(Al)-O stretching vibrations.Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 24, No. 6, pp. 753–756, November–December, 1988.  相似文献   

12.
The activities of the copper-based catalysts, Cu2+ /SiO2,Cu2+ /Vycor and Cu2+/ZSM-5, and V2O5/TiO2 for NO conversion to N2 in the presence or absence of NH3 and/or O2 have been investigated. The Cu2+ /ZSM-5 catalyst exhibited the highest activity, even higher than that of V2O5/TiO2. Photoluminescence studies of the dehydrated copper-based catalysts have suggested that the copper ions anchored onto ZSM-5 locate as isolated copper species near Brönsted sites in the zeolite channels while the copper ions anchored onto Vycor and SiO2 locate mainly as copper dimer forms. These results suggest the role of copper ions which are stabilized with near-lying oxygen vacancies created by dehydroxylation of the zeolite, in NO conversion. As a result, it may be concluded that the isolated copper ions near Brönsted sites play a significant role in NO conversion but dimeric or polynuclear copper species are less effective for the reaction.  相似文献   

13.
Calcination of BaKL zeolite causes Ba2+ ions to migrate to the locked exchange sites. Meanwhile, Pt2+ ions in Pt/BaKL zeolite are also located in these sites because of Ba−O−Pt interaction. Therefore, the reduced Pt/BaKL exhibits better dispersion of Pt particles and improved reactivity inn-hexane aromatization than Pt/KL zeolite.  相似文献   

14.
Ion-exchange experiments were conducted at 25°C between the zeolite mineral clinoptilolite and aqueous solutions of Na+/Sr2+ (0.005, 0.05, and 0.5 N), K+/Sr2+ (0.05N), and K+/Ca2+ (0.05 N). The isotherm data were used to derive equilibrium constants and Gibbs energies for the ion-exchange reactions and Margules parameters for the zeolite solid solution. The Margules model, in combination with the Pitzer equations for activity coefficients of aqueous ions, was used to predict isotherms for ion exchange involving clinoptilolite and aqueous solutions of Na+/Sr2+, K+/Sr2+, and K+/Ca2+ over wide ranges of solution composition and concentration. The ion-exchange isotherms are strongly dependent on the total solution concentration. For Na+/Sr2+ ion exchange, isotherm values at 0.005 and 0.5 N predicted using thermodynamic parameters derived from the 0.05 N data showed excellent agreement with measured values. The model was also applied to calculations of aqueous composition based on the chemistry of coexisting zeolite phases. The results show that the aqueous composition can be predicted well from the composition of the zeolite, at least for systems that involved binary (two-cation) exchange. Because the thermodynamic model can be easily extended to ternary and more complicated mixtures, it may be useful for modeling ion-exchange equilibria in multicomponent systems.  相似文献   

15.
The patterns of static equilibrium sorption of Pb2+ and Mn2+ ions from solutions simulating a composition of industrial liquid waste, onto modified bentonite and zeolite were researched. Na-bentonite and Na-clinoptilolite demonstrate high sorption activity with respect to Pb2+ and Mn2+ ions are recommended instead of a commercial synthetic KU-2-8 for a sorption after-treatment of liquid wastes from toxic Pb2+ and Mn2+ ions.  相似文献   

16.
The non - centrosymmetric tetragonal inverse spinel structure of LiZnNbO4 has been explored with a view to prepare new colored compounds. The substitution of Co2+, Ni2+, Fe2+, Mn2+, and Cu2+ ions were attempted in the place of Zn2+ ions and Sb5+ ions in place of Nb5+ ions. The studies indicated that 0.75 Zn2+ ions in LiZnNbO4 can be replaced by Co2+ ions and 0.5 Zn2+ ions in LiZnNb0.5Sb0.5O4 compound. The substitution of Co2+ ions gives rise to different shades of blue color in Li(Zn1-xCox)NbO4 compounds and from ink blue to blue-green color in Li(Zn1-xCox)(Nb0.5Sb0.5)O4 compounds. The different colors observed in the present study were explained by the traditional allowed d-d transitions as well as the metal-to-metal charge transfer (MMCT) transitions involving Nb5+ (4d0) ions and partially filled 3d electrons. The SHG studies indicate that the prepared compounds are SHG active. All the compounds exhibit reasonable dielectric behavior with low loss. The XPS studies confirm the oxidation states of the different substituted ions. Raman studies indicate variations in the bands due to the substitutions in the parent LiZnNbO4 phase. Magnetic studies on the Co2+ ions substituted compounds suggest antiferromagnetic behavior.  相似文献   

17.
The synthesis of two new tritopic crown ligands (L1 and L2) bearing two benzo-15-crown-5 lateral moieties linked through a dibenzo-trioxa chain together with their interaction with metal ions, in acetonitrile and acetonitrile–water (50%, v/v) solutions is reported. The influence of K+, Na+, Li+, Ca2+, Ba2+, Cu2+, Zn2+, Cd2+, Pb2+ and Al3+, on the spectroscopic properties of these diaza-polyoxa ligands was investigated by absorption spectrophotometry and in some cases by fluorescence emission spectroscopy. Coordination with alkaline (Na+, K+ and Li+) and alkaline earth (Ca2+and Ba2+) metal ions is assumed to be weak with both macrobicyclic ligands, while the interaction with both imine and amine derivatives causes a minor effect in the absorption spectra. Coordination with Cu2+, Zn2+ and Pb2+ in acetonitrile solution causes a major change in the absorption spectra of the chromophores. In the case of Cu2+, addition of the metal to L1 or L2 leads to a blue–violet complex in solution with an absorbance maximum centred at 590 nm. Interaction of the Schiff-base L1 with Pb2+ leads to a short wavelength shift in the absorption bands, comparable with the ZnL1 complex. Presence of transition metal ions such as Co2+, Ni2+and Cd2+ do not remarkably affect the absorption spectra of L1 and L2 in solution. Trivalent aluminium has a modest effect in the absorption bands of both N2O13 donor set bismacrocyclic ligands. The fluorescence study of L2 in the presence of Na+, K+, Ca2+, Ba2+, Co2+, Cu2+, Ni2+, Pb2+ and Al3+shows that Cu2+, Pb2+ and Al3+ complexes form non-fluorescent complexes.  相似文献   

18.
Glasses of the composition XNa2O · 4Al2O3 (96-X) B2O3 (mole%) where X = 10, 20, 30 to which 0.03 g V2O5 per 100 g glass was added, were prepared by normal melting. Their absorption characteristics together with the corresponding V-free base glasses were determined before and after gamma irradiation. The characteristic spectra of the unirradiated glasses show absorption bands at 315, 470, 560–580, 610–650, 700–870, and 860–1000 nm, indicating the presence of vanadium ions in more than one oxidation state, viz, V5+, V4+, and V3+. Gamma irradation of V-containing glasses causes the formation of color centers in the glass matrices, with absorption bands at 330, 500, and 610 nm, and photoreduced [V3+] and [V2+] ions with absorption bands at 350–355 and 530–570 and 520 nm, respectively. Photoreduced [V4+] may also be formed, giving rise to absorptions at 690–700 and 750–800 nm. The induced vanadium ions are found to absorb at shorter wavelengths than the intrinsic ones. An explanation based on the difference in the field energy of the two states is given.  相似文献   

19.
Functionalized Polyvinyl alcohol/sodium alginate (PVA/SA) beads were synthesized via blending Polyvinyl alcohol (PVA) with sodium alginate (SA) and the glutaraldehyde was used as a cross-linking agent. The zeolite nanoparticles (Zeo NPs) incorporated PVA/SA resulting Zeo/PVA/SA nanocomposite (NC) beads were synthesized for removal of some heavy metal from wastewater. The synthesizes beads were characterized via Fourier transforms infrared spectroscopy (FTIR), X-ray diffraction (XRD), particle size analyzer (PSA), and scanning electron microscope (SEM). The adsorption kinetics of the selected metal ions onto Zeo/PVA/SA NC beads followed the pseudo-first-order model (PFO) and the adsorption isotherm model was well fitted by the Langmuir model. Moreover, the thermodynamic studies were also examined; the outcomes showed that the adsorption mechanisms of the selective metal ions were endothermic, the chemical in nature, spontaneous adsorption on the surface of the Zeo/PVA/SA NC beads. The removal efficiency using Zeo/PVA/SA NC modified beads reached maximum at the pH value of 6.0 for Pb2+, Cd2+, Sr2+, Cu2+, Zn2+, Ni2+, Mn2+ and Li2+ with 99.5, 99.2, 98.8, 97.2, 95.6, 93.1, 92.4 and 74.5%, respectively, while the highest removal are achieved at pH = 5 for Fe3+ and Al3+ with 96.5 and 94.9%, respectively and decreased at lower or higher pH values. The survival count (%) of the E. coli cells were 34% on the SA beads, 11% on the PVA/SA, and 1% on the Zeo/PVA/SA NC modified beads, after 120 min exposure at 25 °C. Reusability experimental displays that the synthesized beads preserved a significant decrease in the sorption capacity after 10 repeating cycles. The Zeo/PVA/SA NC beads were able to eliminate 60–99.8% of Al3+, Fe3+, Cr3+, Co2+, Cd2+, Zn2+, Mn2+, Ni2+, Cu2+, Li2+, Sr2+, Si2+, V2+, and Pb2+ ions from the natural wastewater samples collected from 10th Ramadan City, Cairo, Egypt.  相似文献   

20.
The measurements of VUV-UV photoluminescence emission (PL) and photoluminescence excitation (PLE) spectra of rare earth ions activated strontium orthophosphate [Sr3(PO4)2:RE, RE = Ce, Sm, Eu, Tb] are performed. Whenever the samples are excited by VUV or UV light, the typical emission of Ce3+, Sm3+, Eu3+, Eu2+ and Tb3+ ions can be observed in PL spectra, respectively. The charge transfer bands (CTBs) of Sm3+ and Eu3+ are found, respectively, peaking at 206 and 230 nm. The absorption bands peaking in the region of 150-160 nm are assigned to the host lattice sensitization bands, i.e., the band-to-band transitions of PO43− grouping in Sr3(PO4)2. It is speculated that the first f-d transitions of Sm3+ (Eu3+), and the CTB of Tb3+are, respectively, located around 165 (1 4 3) and 167 nm by means of VUV-UV PLE spectra and relational empirical formula, these f-d transitions or CT bands are included in the bands with the maxima at 150-160 nm, respectively. The valence change of europium from trivalent to divalent in strontium orthophosphate prepared in air is observed by VUV-UV PL and PLE spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号