首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Neutron diffraction studies and magnetic measurements on the compounds TbNi2Si2 (1), HoCo2Si2 (2) and TbCo2Si2 (3) revealed a collinear antiferromagnetic order below TN = 10 ± 1 K (1), TN = 13 ± 1 K (2) and TN = 30 ± 2 K (3) with the rare earths moments oriented along the c-axis [m0 = 8.8 ± 0.2 μB (1), m0 = 8.1 ± 0.2 μB (2), m0 = 8.8 ± 0.2 μB (3)] and the corresponding wavevector are k = [12120] (1) andk = [ 0 0 1] (2) (3). The magnetic structure of the compounds HoCo2Si2 and TbCo2Si2 consists of ferromagnetic layers perpendicular to the c-axis coupled antiferromagnetically (+?+?) while for TbNi2Si2 the ordering within (0 0 1) plane is antiferromagnetic and the planes (0 0 1) are indeed decoupled.  相似文献   

2.
The resistivity of RECu2Si2 compounds contains a term which is due to a mixture of spin and aspherical Coulomb scattering. The disorder resistivities and the ordering temperatures scale well with each other but deviate strongly from the de Gennes factor. The deviations scale with an anomaly of the c/a ratio which develops at low temperatures for the RE ions with L ≠ 0.  相似文献   

3.
Neutron diffraction and magnetization study of polycrystalline NdRh2Si2 and ErRh2Si2 was performed in the temperature range from 4.2 to 293 K. Both compounds are of ThCr2Si2 type crystal structure and exhibit antiferromagnetic ordering below TN = 53 K and TN = 12.8 K respectively. The magnetic structure wave vector is τ = [0, 0, 1].  相似文献   

4.
Magnetostriction measurements are reported for TbAl2 below the ordering temperature. Single crystal magnetostriction coefficients are estimated for TbAl2. From the measured data together with the results obtained earlier for TbCo2, it is found that the source of the magnetostriction is the strain-dependent anisotropy of the Tb sublattice.  相似文献   

5.
The magnetic properties of the R Au2Si2 compounds with R = Ce-Er have been investigated. It was found that the compounds for which R = Ce, Sm, Gd, Tb and Dy are antiferromagnetically ordered at temperatures ranging from 5.7 to 15.9°K. PrAu2Si2 and NdAu2Si2 exhibit paramagnetic behavior for temperatures as low as 4.2°K. The magnetic structure is ferrimagnetic for the compounds in which R = Eu, Ho, and Er. The Eu compound is in the divalent state. The Néel and Curie points for this system do not follow the De-Gemnes function. Curie-Weiss Behavior is exhibited by all the compounds with effective moments in good agreement with that of a free tripositive lanthanide ion. The difference in magnetic properties between R Au2Si2 and the isomorphous R Fe2Si2 series is discussed.  相似文献   

6.
7.
Magnetic properties of RMn2Si2 and RMn2Ge2 compounds, where R is a rare earth metal, have been investigated by magnetometric measurements. RMn2Ge2 (where R is a light rare earth) and LaMn2Si2 are ferromagnets. Remaining compounds have antiferromagnetic properties. DyMn2Si2 and ErMn2Si2 show ferromagnetic properties at low temperatures. It was confirmed that the value of Curie (or Néel) temperature for the Mn sublattice decreases with increasing c constant.  相似文献   

8.
A small polycrystalline ingot sample of NpCo2Si2 (weight ≈ 1.5 g) has been studied by neutron diffration between 2 and 160 K on the multi-detector D1B of ILL, Grenoble. At 100 K, the crystal structure is body-centered tetragonal (space group 14/mmm) with a = 3.886 Å and c =9.649 Å. Below TN = (44 ± 2) K, seven superlattice lines are observed which correspond to a simple tetragonal lattice with lattice constants as above. They are consistent with a type I antiferromagnetic structure of the Np (2a) sublattice, with (001) ferromagnetic sheets coupled antiferromagnetically according to the sequence +-+-. At 6 K, the neptunium moment obtained from the diffracted intensities is: (1.48 ± 0.20)μuB, and makes an angle 52° ± 15° with the c axis. The cobalt moment is certainly smallet than 0.3μuB. The Np moment correlates well with the 237Np hyperfine field deduced from Mos?sbauer spectroscopy; the sublattice magnetization-temoperature curve follows very well the J=12 brillouin curve. The magnetism is therefore probably of lovalized character in this compound. An isomorphous sample of NpCu2Si2 (a = 3.990 Å c = 9.920 Å) was shown to be ferromagnetic below (41 ± 2) K, with the Np moment [1.5 ± 0.2)μuB] aligned along the c axis.  相似文献   

9.
Magnetic phases in PrCo2Si2 have been studied by measurements of magnetization, neutron diffraction and electrical resistivity. For <9 K, the magnetic structure with a propagation vector k = (0,0,1) [2π/c] is stable. Incommensurate structures k = (0,0,0.926) and (0,0,0.777) appear for 9 K < T <17 K and 17 K < T <30 K, respectively.  相似文献   

10.
邹君鼎  沈保根  孙继荣 《中国物理》2007,16(12):3843-3847
Magnetic properties and magnetocaloric effect in TbCo2-xFex compounds are studied by DC magnetic measurement. With increasing content of Fe, the entropy changes decrease slightly, though the Curie temperature is tuned from 231 K (x = 0) to 303 K (x = 0.1). Magnetic entropies of TbCo2 compound are calculated by using mean field approximation (MFA). Results estimated by using Maxwell relation are consistent with that of MFA calculation. It is shown that the entropy changes are mainly derived from the magnetic entropy changes. The lattice has almost no contribution to the entropy change in the vicinity of phase transition.  相似文献   

11.
Considering certain interesting features in the previously reported 166Er Mössbauer effect, and neutron diffraction data on the polycrystalline form of ErPd2Si2 crystallizing in the ThCr2Si2-type tetragonal structure, we have carried out magnetic measurements (1.8–300 K) on the single crystalline form of this compound. We observe significant anisotropy in the absolute values of magnetization (indicating that the easy axis is c-axis) as well as in features due to magnetic ordering in the plot of magnetic susceptibility χ versus temperature T at low temperatures. The χ(T) data reveal that there is a pseudo-low-dimensional magnetic order setting in at 4.8 K, with a three-dimensional antiferromagnetic order setting in at a lower temperature (3.8 K). A new finding in the χ(T) data is that, for H∥〈1 1 0〉 but not for H∥〈0 0 1〉, there is a broad shoulder in the range 8–20 K, indicative of the existence of magnetic correlations above 5 K as well, which could be related to the previously reported slow-relaxation-dominated Mössbauer spectra. Interestingly, the temperature coefficient of electrical resistivity is found to be isotropic; no feature due to magnetic ordering could be detected in the electrical resistivity data at low temperatures, which is attributed to magnetic Brillioun-zone boundary gap effects. The results reveal the complex nature of magnetism of this compound.  相似文献   

12.
We have investigated the magnetic and transport properties of a polycrystalline Pr2Pt3Si5 sample through the dc and ac magnetic susceptibilities, electrical resistivity, and specific heat measurements. The Rietveld refinement of the powder X-ray diffraction data reveals that Pr2Pt3Si5 crystallizes in the U2Co3Si5-type orthorhombic structure (space group Ibam). Both the dc and ac magnetic susceptibility data measured at low fields exhibit sharp anomaly near 15 K. In contrast, the specific heat data exhibit only a broad anomaly implying no long range magnetic order down to 2 K. The broad Schottky-type anomaly in low temperature specific heat data is interpreted in terms of crystal electric field (CEF) effect, and a CEF-split singlet ground state is inferred. The absence of the long range order is attributed to the presence of nonmagnetic singlet ground state of the Pr3+ ion. The electrical resistivity data exhibit metallic behavior and are well described by the Bloch–Grüniesen–Mott relation.  相似文献   

13.
We have investigated the magnetic and transport properties of a new ternary intermetallic compound Pr2Pd3Si5 which forms in U2Co3Si5-type orthorhombic structure (space group Ibam). At low field (0.01 T) magnetic susceptibility exhibits an abrupt increase below 7 K and peaks at 5 K, revealing a magnetic phase transition. The onset of magnetic order is also confirmed by well defined anomalies in the specific heat and electrical resistivity data. Apart from the sharp λ-type anomaly, magnetic part of specific heat also shows a broad Schottky-type hump due to crystal field effect. Magnetoresistance data as a function of temperature exhibits a pronounced peak in paramagnetic state which could be interpreted in terms of crystal field effect and short-range ferromagnetic correlations.  相似文献   

14.
In this work the Mn5Si3 and Mn5SiB2 phases were produced via arc melting and heat treatment at 1000 °C for 50 h under argon. A detailed microstructure characterization indicated the formation of single-phase Mn5Si3 and near single-phase Mn5SiB2 microstructures. The magnetic behavior of the Mn5Si3 phase was investigated and the results are in agreement with previous data from the literature, which indicates the existence of two anti-ferromagnetic structures for temperatures below 98 K. The Mn5SiB2 phase shows a ferromagnetic behavior presenting a saturation magnetization Ms of about 5.35×105 A/m (0.67 T) at room temperature and an estimated Curie temperature between 470 and 490 K. In addition, AC susceptibility data indicates no evidence of any other magnetic ordering in 4-300 K temperature range. The magnetization values are smaller than that calculated using the magnetic moment from previous literature NMR results. This result suggests a probable ferrimagnetic arrangement of the Mn moments.  相似文献   

15.
The magnetic properties of polycrystalline PrRh2Si2 sample have been investigated by neutron diffraction measurements. Antiferromagnetic transition with an anomalously high ordering temperature (TN∼68 K) is clearly observed in magnetic susceptibility, specific heat, electrical resistivity and neutron diffraction measurements. Neutron diffraction study shows that Pr3+ ions carry an ordered moment of 2.99(7)μB/Pr3+ and align along the crystallographic±c-directions for the ions located at the (0,0,0) and positions. The magnetoresistance at 2 K and 10 T is rather large (∼35%).  相似文献   

16.
Neutron diffraction study of polycrystalline compounds ErMn2Si2, ErMn2Ge2 and ErFe2Si2 was performed in the temperature range between 1.8 and 293 K. All compounds have tetragonal, ThCr2Si2-type crystal structure. The antiferromagnetic collinear structure of ErMn2Si2 and ErMn2Ge2 at both RT and LNT, consists of a sequence + - + - of ferromagnetic layers of Mn atoms. The magnetic moment of an Mn atom (≈2μB) is parallel to the c-axist. At low temperatures (LHT and lower), the ferromagnetic ordering within the Er sublattice is observed. The magnetic moment (μEr ≈ 9μB) is perpendicular to the c-axis. From the temperature dependence of the intensities of the magnetic peaks, the following values for the Curie temperatures were obtained: (10±5) K for ErMn2Si2 and (8.5±3) K for ErMn2Ge2. For ErFe2Si2 a collinear antiferromagnetic structure of the + - - + type was found, the magnetic unit cell consisting of the chemical one, doubled along the c-axis.  相似文献   

17.
We have observed the 59Co spectra of the Laves phase Co compounds with Nd, Gd, Tb and Ho. We observe a spectrum consisting of a pair of lines for Nd, Tb and Ho compounds, because the Co sites are magnetically inequivalent in the presence of dipolar or pseudodipolar fields. For the heavy rare earth compounds, the magnitude of this splitting is comparable to the dipolar splitting produced by the neighboring spins, but for Nd it is much larger. The Nd compound is also anomalous in that the average hyperfine field is only 37.2 kOe while for the 3 heavy rare earth compounds it is about 60 kOe. The magnitude of the hyperfine field is discussed in terms of a simple model relating it to the cobalt moment and the rare earth spin.  相似文献   

18.
Resistivity measurements of CeCu2Si2 are carried out under pressures p up to 12 kbars. Unlike polycrystalline samples, no traces of superconductivity have been observed in CeCu2Si2 at ambient pressure. When pressure is applied, CeCu2Si2 monocrystals become superconducting with anomalously large ratio Hc2(0)/Tc (0) = 34 K0e/K and with the derivative dHc2/dT(T=Tc) = 140 K0e/K  相似文献   

19.
The magnetic structures and some relevant bulk magnetic properties of R(Cu, Ni)2 (R = Tb, TbzY1−z, Dy, Ho, Er and Tm) are summarized. Basically, the magnetic structures are antiferromagnetically modulated with propagation vector a*. For R = Tb, Dy, Ho the a-axis anisotropy dominates and the structures are longitudinally modulated. For R = Tm, Er (probably) the b-axis anisotropy dominates and this results in transversely modulated structures. For R = Tb, Dy the structures are collinear, For R = Ho, Er, Tm (probably) an incommensurate modulation coexists with the commensurate a*-axis modulation at the lowest temperature.  相似文献   

20.
The compounds U4Rh13Si9 and U4Ir13Si9 crystallize with the orthorhombic Er4Ir13Si9-type structure that contains three non-equivalent positions of uranium atoms. Their magnetic, electrical transport and thermal properties were studied down to liquid helium temperature in magnetic fields up to 9 T. Both compounds have been found to order antiferromagnetically at low temperatures and to exhibit complex magnetic behavior in the ordered state. Some features characteristic of spin fluctuators (U4Rh13Si9) and Kondo lattices (U4Ir13Si9) indicate that the two ternaries studied are novel strongly correlated electron systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号