首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A styrene-maleic anhydride (SMA) alternating copolymer with ultrahigh molecular weight (Mw > 106) synthesized in super critical carbon dioxide (SC CO2) medium was used as hydrophilic polymeric additive in the preparation of polyethersulfone (PES) membranes. The PES/SMA blend membranes were prepared by immersion precipitation process. X-ray photoelectronic spectroscopy (XPS) measurements confirmed that the hydrolyzed SMA preferentially segregated to membrane–coagulant interface during membrane formation. For the PES/SMA blend membranes, no big change was observed in the cross-sectional structure and the mechanical properties were well maintained after SMA addition except that a thicker top layer was formed. The surface morphology analysis by atomic force microscopy (AFM) showed that the membrane surface roughness increased with the added SMA amount. The results of water contact angle, water absorbance measurements and static protein adsorption experiments revealed that the surface enrichment of SMA endowed PES/SMA blend membranes with significantly improved surface hydrophilicity and protein-adsorption resistance.  相似文献   

2.
Amphiphilic graft copolymers having ultrahigh molecular weight poly(styrene-alt-maleic anhydride) (SMA) backbones and methoxyl poly(ethylene glycol) (MPEG) grafts were synthesized via the esterification between anhydride groups with hydroxyl groups. The synthesized graft copolymers, SMA-g-MPEGs, were used as additives in the preparation of polyethersulfone (PES) membranes via phase inversion process. X-ray photoelectron spectroscopy (XPS) analysis showed the comb-like graft copolymers spontaneously segregated to membrane surface during membrane formation. Water contact angle measurements and water absorbance experiments indicated the PES/SMA-g-MPEG blend membranes were much more hydrophilic than pure PES membrane. The blend membranes had stronger protein adsorption resistance than pure PES membrane did. After washed using de-ionized water for 25 days, the blend membranes exhibited higher hydrophilicity and stronger protein adsorption resistance. This phenomenon was attributed to the further accumulation of SMA-g-MPEG additives on membrane surface in aqueous conditions. SMA-g-MPEGs can be well preserved in membrane near-surface and not lost during membrane washing due to their high molecular weight and comb-like architecture.  相似文献   

3.
A novel TiO2 nanoparticle self-assembly membrane was prepared based on ultrahigh molecular weight poly(styrene-alt-maleic anhydride)/poly(vinylidene fluoride) (SMA/PVDF) blend membrane. TiO2 nanoparticle solution was beforehand prepared via the controlled hydrolysis of titanium tetraisopropoxide. The diameter (10 nm or less) and anatase crystal structure were analyzed using transmission electron microscopy (TEM) and X-ray diffraction (XRD). The SMA/PVDF blend membranes prepared by the phase inversion method were immersed into the TiO2 nanoparticle solution for a week to produce TiO2 self-assembly membranes. The chemical compositions in membrane surface were analyzed by X-ray photoelectron spectroscopy (XPS). The membrane morphologies were measured by scanning electron microscopy (SEM). Finally, the membrane hydrophilicity, protein anti-fouling property and the molecular weight cutoff (MWCO) were characterized by water contact angle measurement, static protein absorption and filtration experiments, respectively. It is demonstrated that, in comparison to PVDF/SMA blend membrane, the permeability and anti-fouling ability of TiO2 self-assembly membranes were significantly improved.  相似文献   

4.
聚醚砜/纤维素晶体共混膜材料及其超滤性能   总被引:1,自引:0,他引:1  
聚醚砜与纤维素晶体等共混成铸膜液,采用浸没沉淀相转化法制备聚醚砜/纤维素晶体共混膜材料.通过超滤装置检测复合膜的水通量、截留率、平均孔径、孔隙率、抗污染性等超滤性能,从而讨论了纤维素晶体含量对共混膜超滤性能的影响.采用抗张测试机、热重分析仪(TGA)、原子力显微镜(AFM)对共混膜的力学性能、热稳定性能、形貌结构进行表征.结果表明,随着纤维素晶体的含量的增加,共混膜的纯水通量先升高后有所降低,截留率均保持在91%~95%,抗张强度、断裂伸长率先增大后有所下降,抗污染性较纯聚醚砜膜显著提高.当纤维素晶体质量分数为1%时,纯水通量达到最大为813.3L·m-2·h-1,孔隙率为88.8%,平均孔径达为70.9nm,抗张强度为7.25MPa,断裂伸长率为11.6%,平均污染度FR值为22.0%,衰减系数m值为35.8%.共混膜具有由纤维素晶体、聚醚砜热降解分别引起的两个失重阶段.共混膜为典型非对称膜结构,表皮层较为致密,多孔支撑层孔径较大.  相似文献   

5.
The synthesis of a novel amphiphilic comb-shaped copolymer consisting of a main chain of styrene-(N-(4- hydroxyphenyl) maleimide)(SHMI) copolymer and poly(ethylene glycol) methyl ether methacrylate(PEGMA) side groups was achieved by atom transfer radical polymerization(ATRP).The amphiphilic copolymers were characterized by ~1H-NMR, Fourier transform infrared(FTIR) spectroscopy and gel permeation chromatography(GPC).From thermogravimetric analysis (TGA),the decomposition temperature of SHMI-g-PEGMA is low...  相似文献   

6.
To endow hydrophobic poly(vinylidene fluoride) (PVDF) membranes with reliable hydrophilicity and protein resistance, an amphiphilic hyperbranched-star polymer (HPE-g-MPEG) with about 12 hydrophilic arms in each molecule was synthesized by grafting methoxy poly(ethylene glycol) (MPEG) to the hyperbranched polyester (HPE) molecule using terephthaloyl chloride (TPC) as the coupling agent and blended with PVDF to fabricate porous membranes via phase inversion process. The chemical composition changes of the membrane surface were confirmed by X-ray photoelectron spectroscopy (XPS), and the membrane morphologies were measured by scanning electron microscopy (SEM). Water contact angle, static protein adsorption, and filtration experiments were used to evaluate the hydrophilicity and anti-fouling properties of the membranes. It was found that MPEG segments of HPE-g-MPEG enriched at the membrane surface substantially, while the water contact angle decreased as low as 49 degrees for the membrane with a HPE-g-MPEG/PVDF ratio of 3/10. More importantly, the water contact angle of the blend membrane changed little after being leached continuously in water at 60 degrees C for 30 days, indicating a quite stable presence of HPE-g-MPEG in the blend membranes. Furthermore, the blend membranes showed lower static protein adsorption, higher water and protein solution fluxes, and better water flux recovery after cleaning than the pure PVDF membrane.  相似文献   

7.
A complete and permanent hydrophilic modification of polyethersulfone (PES) membranes is achieved by argon plasma treatment followed by polyacrylic acid (PAA) grafting in vapor phase. Both Ar plasma treatment alone and post-PAA grafting rendered a complete hydrophilicity to the PES membranes. The hydrophilicity of the membranes treated with only the Ar plasmas is not, however, permanent. In contrast, the PES membranes treated with Ar plasma and subsequent acrylic acid (AA) grafting are permanently hydrophilic. High energy resolution X-ray photoelectron spectroscopy (XPS) confirmed the grafting of PAA to all surfaces of the membrane. Furthermore, water bubble point measurements remain unaffected. The pore sizes of the grafted membranes at higher grafting yield are slightly decreased. The modified membranes are less susceptible to protein fouling than the unmodified membranes and the pure water flux for the modified membranes was tremendously increased by plasma treatment. Furthermore, the modified membranes are easier to clean and required little caustic to recover permeation flux.  相似文献   

8.
Amphiphilic graft copolymers comprising poly(phthalazinone ether sulfone ketone) (PPESK) backbones and poly(ethylene glycol) (PEG) side chains were synthesized and blended into PPESK casting solutions to prepare hydrophilic and anti-fouling microporous membranes. The graft copolymer was prepared by a modified Williamson etherification method. Sodium alkoxide of methoxyl PEG (PEG-ONa) was used to react with chloromethylated PPESK (CMPPESK). FT-IR spectroscopy, 1H NMR and solid-state 13C CP-MAS NMR analysis confirmed the covalent linking of PEG with PPESK backbones. The incorporation ratio of PEG calculated from 1H NMR was in agreement with that from TGA tests. The graft products were added into PPESK casting solutions to prepare composite porous membranes using phase inversion method. X-ray photoelectron spectroscopy (XPS) and water contact angle examinations indicated that the grafting copolymers were preferentially excluded to the membrane-coagulant interface during membrane forming, contributing the membranes with improved hydrophilicity and surface wettability. Compared with the neat membrane, the blend membranes exhibited a larger surface pore size and less susceptible to protein fouling.  相似文献   

9.
A new random copolymer was synthesized by reacting hydrophilic N,N-dimethyl-N-methacryloxyethyl-N-(3-sulfopropyl) (DMMSA) with hydrophobic butyl methacrylate (BMA) through a conventional radical polymerization. The as-prepared sulfobetaine copolymer (DMMSA–BMA) was blended with polyethersulfone (PES) to fabricate antifouling ultrafiltration membrane for BSA separation. The X-ray photoelectron spectroscopy analysis of blend membranes revealed concentration of sulfobetaine groups at the membrane surfaces that endowed the membrane with higher hydrophilicity and better antifouling property. For the membrane with 8.0 wt% DMMSA–BMA copolymer concentration (No. 5), irreversible fouling has been considerably reduced and the flux recovery rate of the blend membrane reached as high as 82.8%. Furthermore, the blend membrane could effectively resist BSA fouling in a wide pH range from 4.0 to 8.0.  相似文献   

10.
The synthesized phosphorylcholine copolymer composed of 2-methacryloyloxyethylphosphorylcholine (MPC) and n-butyl methacrylate (BMA), blended with polyethersulfone (PES), was used to fabricate antifouling ultrafiltration membranes. Water contact angle measurements confirmed that the hydrophilicity of the MPC-modified PES membranes was enhanced to certain extent. X-ray photoelectron spectroscopy (XPS) analysis verified the substantial enrichment of MPC at the surface of the MPC-modified PES membranes. The adsorption experiments indicated that the adsorption amounts of bovine serum albumin (BSA) on the MPC-modified PES membranes were dramatically decreased in comparison with the control PES membrane. Ultrafiltration experiments were carried out to investigate the effect of MPC modification on the antifouling and permeation properties of the PES membranes, it was found that the rejection ratio of BSA was decreased, the flux recovery ratio was remarkably increased, and the degree of irreversible fouling decreased from 0.46 to 0.09. In addition, the MPC-modified PES membranes could run several cycles without substantial flux loss.  相似文献   

11.
Maleic anhydride was grafted onto a polyacrylonitrile (PAN) membrane surface via ultraviolet irradiation. Then, hyperbranched polyester, with varying numbers of hydroxyl end‐groups (H20, H30, and H40), was grafted onto the PAN membrane surface by the reaction of hydroxyl groups with anhydride groups of maleic anhydride. The modified membranes were characterized by scanning electron microscopy, static water contact angle, and attenuated total reflectance‐Fourier transform infrared spectroscopy measurements. The modified membranes showed a higher water flux and better antifouling properties than pristine PAN membranes, and their hydrophilicity was significantly improved. Membrane biocompatibility was characterized by platelet adhesion, and the results indicate that the modified membranes exhibited good biocompatibility. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Polyethersulfone (PES) membranes are prevalent in the field of water treatment owing to their exceptional separation efficiency, robust mechanical properties, and resistance to chemical degradation. Nevertheless, these membranes are prone to fouling, resulting in a decrease in both flux and ultrafiltration efficiency. In the present study, PES membranes are blended with poly (3-Sulfopropyl Methacrylate) (PSPMA) in various weight percentages (0%–3%) to improve their antifouling and ultrafiltration properties. The physicochemical properties of the blended membranes, including surface morphology, contact angle, hydrophilicity and surface energy are evaluated. The findings indicate that incorporation PSPMA results in an enhancement of the hydrophilic properties and surface charge of the PES membranes, assessed by employing Bovine Serum Albumin (BSA) as a representative protein. Modified blended membranes display greater Flux Recovery Ratio (FRR%) and exhibit superior fouling resistance. Under the same experimental conditions (0.2 MPa applied pressure), a pure water flux of 154.18 L·m−2·h−1 for PES/PSPMA membrane found substantially greater than pure PES membrane (103.52 L·m−2·h−1) along with Total Fouling Ratio (TFR) of 36% and 64.9% respectively. Exceptional antimicrobial efficacy for modified membranes is revealed against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) using disc diffusion technique rendering them well-suited for water treatment applications.  相似文献   

13.
An adsorption-crosslinking process of poly(vinyl alcohol) (PVA) was introduced to modify the surface of polyethersulfone (PES) ultrafiltration membranes for enhancement of their antifouling property. XPS and water contact angle measurement confirmed the obvious enhancement of surface hydrophilicity. Ultrafiltration results showed that the spreading of PVA chains over the hydrophobic membrane surface caused substantial but acceptable decrease on membrane flux. The fouling type analysis indicated that PVA adsorption effectively improved the antifouling property of PES membranes. With a PVA concentration of 0.5 wt% and three cycles of alternative adsorption-crosslinking, the total and irreversible fouling ratio of modified membranes were 0.38 and 0.22, respectively, much lower than those of control PES membrane (0.61 and 0.47), and the flux recovery ratio was increased accordingly. The long-term ultrafiltration experiment demonstrated the improvement of recycling property and the reliability of adsorption-crosslinking process.  相似文献   

14.
从分子结构设计出发,采用自由基聚合、醚化、酯化、原子转移自由基聚合(ATRP)、可逆加成断裂链转移自由基聚合(RAFT)等方法合成了一系列具有不同分子结构(包括接枝、嵌段、交替、超支化等)和链形态(包括直链、梳状、哑铃状、链球状等)的两亲性共聚物,并对这些聚合物进行了谱学表征和性能测试.将这些两亲性共聚物与聚合物膜材料(包括聚偏氟乙烯、聚氯乙烯、聚砜、聚醚砜、聚醚砜酮等)进行溶液共混,通过相转化法制备共混膜,在成膜热力学和动力学分析的基础上,对共混膜的结构和性能进行调控.研究发现,两亲性共聚物在成膜过程中自发地向膜表面迁移富集,并进行自组装,在膜表面形成两亲性共聚物包膜,显著改善了聚合物多孔膜的亲水性和抗污染性能.此外,两亲性共聚物中的功能基团还可赋予共混膜某些功能特性,如生物相容性、环境响应性(pH、温度敏感性)、酶活性等.  相似文献   

15.
Novel ultrafiltration membranes were prepared by simple blending of polyethersulfone (PES) and soybean phosphatidylcholine (SPC). X-ray photoelectron spectroscopy (XPS) and water contact angle measurements indicated SPC enrichment at the membrane surfaces. The immobilization and arrangement of PC groups at surfaces rendered the membranes more hydrophilic. BSA adsorption amount decreased from 56.2 μg/cm2 for SPC-free PES membrane to 2.4 μg/cm2 for PES/SPC blend membrane. The fouling-resistant property of the blend membranes was improved considerably with an increase of SPC content while the pure water permeation flux decreased remarkably. Using PEG/PVP mixture instead of PEG as pore-forming agent increased pure water flux of PES/SPC blend membrane to some extent.  相似文献   

16.
朱宝库 《高分子科学》2010,28(3):337-346
<正>High density polyethylene(HDPE)/polyethylene-block-poly(ethylene glycol)(PE-b-PEG) blend porous membranes were prepared via thermally induced phase separation(TIPS) process using diphenyl ether(DPE) as diluent.The phase diagrams of HDPE/PE-b-PEG/DPE systems were determined by optical microscopy and differential scanning calorimetry(DSC).By varying the content of PE-b-PEG,the effects of PE-b-PEG copolymer on morphology and crystalline structure of membranes were studied by scanning electron microscopy(SEM) and wide angle X-ray diffraction(WAXD). The chemical compositions of whole membranes and surface layers were characterized by elementary analysis,Fourier transform infrared spectroscopy-attenuated total reflection(FTIR-ATR) and X-ray photoelectron spectroscopy(XPS).Water contact angle,static protein adsorption and water flux experiments were used to evaluate the hydrophilicity,antifouling and water permeation properties of the membranes.It was found that the addition of PE-b-PEG increased the pore size of the obtained blend membranes.In the investigated range of PE-b-PEG content,the PEG blocks could not aggregate into obviously separated domains in membrane matrix.More importantly,PE-b-PEG could not only be retained stably in the membrane matrix during membrane formation,but also enrich at the membrane surface layer.Such stability and surface enrichment of PE-b-PEG endowed the blend membranes with improved hydrophilicity,protein absorption resistance and water permeation properties,which would be substantially beneficial to HDPE membranes for water treatment application.  相似文献   

17.
Abstract

Hydrophilicity-controlled poly(arylene ether sulfone) copolymers with phenolphthalein-based carboxylic acid groups (PES-COOH-X) were synthesized via direct copolymerization by adjusting the feed molar ratio. The chemical structures of the obtained copolymers were confirmed by 1H nuclear magnetic resonance (NMR) spectroscopy. The copolymers showed good solubility in common aprotic solvents and exhibited excellent mechanical properties. The water contact angles of the obtained copolymers could be reduced by approximately 52% from 92.1° to 44.2° with increasing content of phenolphthalein-derived monomer, 2-[bis(4-hydroxyphenyl)methyl] benzoic acid (PPH-COOH), in the feed molar ratio. A series of PES-COOH-X membranes was prepared via a conventional immersion precipitation phase inversion method. The effects of the monomer feed molar ratio on the morphology, hydrophilicity, pure water flux, and water uptake of the prepared membranes were investigated. The results showed that the pure water flux of the PES-COOH-X membranes was significantly enhanced by almost a factor of two as compared to the pristine PES membrane. From the water contact angle data, it was identified that the hydrophilicity of the membranes was increased rapidly with increasing PPH-COOH content in the membranes. These hydrophilicity-controlled poly(arylene ether sulfone) copolymers may be considered as good candidates for separation membrane materials.  相似文献   

18.
In this study, temperature-sensitive membranes were prepared by phase transition of the mixture of the temperature-sensitive poly(N-isopropylacrylamides) (PNIPAAM) microgels and poly(vinylidene fluoride). The results of Fourier transformed infrared spectrometer, X-ray photoelectron spectroscopy, elemental analysis, and scanning electron microscope photographs indicate that the PNIPAAM microgels are distributed more in the inner membrane than on the surface. The scanning electron microscope photographs reveal the blend membranes having porous surfaces with nanometer sizes and porous cross-sections with micrometer sizes. The addition of the PNIPAAM microgels is found to improve the porosity, the pore size, water flux, as well as to enhance the hydrophilicity and anti-fouling property of the blend membranes. The blend membrane shows temperature-sensitive permeability and protein rejection with the most dramatic change at around 32 °C which is the lower critical solution temperature of PNIPAAM, when water or bovine serum albumin solution flow through. Specifically, below 32 °C, the blend membrane shows a high protein rejection ratio which decreases with increasing temperature and a low water flux which increases with increasing temperature; above 32 °C, the blend membrane shows a low protein rejection ratio which decreases with increasing temperature and a high water flux which increases with increasing temperature.  相似文献   

19.
High density polyethylene (HDPE)/polyethylene-Wock-poly(ethylene glycol) (PE-b-PEG) blend porous membranes were prepared via thermally induced phase separation (TIPS) process using diphenyl ether (DPE) as diluent. The phase diagrams of HDPE/PE-b-PEG/DPE systems were determined by optical microscopy and differential scanning calorimetry (DSC). By varying the content of PE-b-PEG, the effects of PE-b-PEG copolymer on morphology and crystalline structure of membranes were studied by scanning electron microscopy (SEM) and wide angle X-ray diffraction (WAXD). The chemical compositions of whole membranes and surface layers were characterized by elementary analysis, Fourier transform infrared spectroscopy-attenuated total reflection (FTIR-ATR) and X-ray photoelectron spectroscopy (XPS). Water contact angle, static protein adsorption and water flux experiments were used to evaluate the hydrophilicity, antifouling and water permeation properties of the membranes. It was found that the addition of PE-b-PEG increased the pore size of the obtained blend membranes. In the investigated range of PE-b-PEG content, the PEG blocks could not aggregate into obviously separated domains in membrane matrix. More importantly, PE-b-PEG could not only be retained stably in the membrane matrix during membrane formation, but also enrich at the membrane surface layer. Such stability and surface enrichment of PE-b-PEG endowed the blend membranes with improved hydrophilicity, protein absorption resistance and water permeation properties, which would be substantially beneficial to HDPE membranes for water treatment application.  相似文献   

20.
采用木质素磺酸钠作为亲水添加剂,通过浸没沉淀相转化法制备了木质素磺酸钠共混改性聚砜膜,以改善聚砜膜的亲水性,并用作正渗透膜的支撑层,以降低内浓差极化效应.利用扫描电子显微镜、衰减全反射傅里叶变换红外光谱仪、水接触角仪等研究了不同木质素磺酸钠添加量对聚砜膜的结构和表面性质的影响.结果表明,添加木质素磺酸钠后,聚砜膜的指状孔变得规整且狭长.水接触角实验证实添加木质素磺酸钠能改善聚砜膜的亲水性,当木质素磺酸钠含量为0.4 wt%时,聚砜膜的表面水接触角可降低至65°.正/反渗透测试装置分别用于表征正渗透膜的传质性质和结构参数.结果表明,以0.4 wt%木质素磺酸钠改性聚砜膜为支撑层的正渗透膜的水渗透性能(A=3.12×10~(-5) LMH×Pa~(-1))优于纯聚砜基底正渗透膜(0.76×10~(-5)LMH×Pa~(-1)),而且前者的结构参数(S=2010mm)远小于后者(3450mm),说明木质素磺酸钠改性聚砜膜有效弱化了正渗透膜的内浓差极化效应.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号