首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reports on the supported liquid membrane (SLM) based transport studies of U(VI) from sulphate medium using di-(2-ethylhexyl) phosphoric acid/n-dodecane as carrier. Polytetrafluoroethylene membrane was used as solid support and H2SO4 as receiver phase. The effects of various parameters such as receiver phase concentration, feed acidity, carrier concentration, U(VI) concentration, membrane thickness and membrane pore size on U(VI) transport had been investigated. With increase in H2SO4 concentrations and pH of feed solution there is an increase in U(VI) transport across the SLM. Similarly with increase in membrane thickness the U(VI) transport decrease whereas in case of pore size variation reverse results are obtained. The membrane thickness variation results showed that the U(VI) transport across the SLM is entirely diffusion controlled and the diffusion coefficient the D (o) was calculated as 1.36 × 10?7 cm2 s?1. Based on optimized condition, a scheme had been tested for selective recovery of U(VI) from ore leach solution containing a large number of other metal ions.  相似文献   

2.
The liquid membrane transport of Pb2+ cation using decyl-18-crown-6 as selective ion carrier was studied. The transport of lead ion across the liquid membrane in the presence of S2O 3 2? , P2O 7 4? , CN?, SCN?, and DDC? as stripping agents in the receiving phase shows that the nature and the concentration of the stripping agents affect on Pb2+ cation transport and the maximum transport occurs when the sodium thiosulfate (Na2S2O3) was used. The effects of various parameters influencing the transport efficiency such as the pH of the source and receiving phases, the concentration of picrate ion as counter ion in the source phase were also studied. Five replicated experiments show that a value 82.12 ± 2.09% of the initial concentration of the Pb2+ cation in the source phase is extracted into the receiving phase after 4 hours. Also the selectivity and efficiency of lead ion transport from the source phase containing equimolar mixtures of Na+, K+, Ca2+, Ni2+, Cu2+, Cd2+ and Ag+ metal cations were investigated.  相似文献   

3.
A polymeric membrane based Pb(II) selective potentiometric sensor was developed by using 1,3,7,9-tetraaza-2,8-dithia-4,10-dimethyl-6,12-diphenylcyclododeca-4,6,10,12-tetraene (TDDDCT) as an electroactive material along with anion excluder sodium tetraphenylborate (NaTPB) and plasticizer dioctylphthalate (DOP). The best performance in terms of slope, concentration range and response time was exhibited by the membrane having TDDDCT:PVC:DOP:NaTPB in the ratio 3:32:62:3 (w/w%). Potentiometric results show that the developed sensor works well in the concentration range 5.0 × 10?7–1.0 × 10?1 M with a near Nernstian slope of 29.5 (±0.5) mV decade?1. The detection limit is down to 2.5 × 10?7 M. The working pH range of this sensor is 2.8–7.0 and it works well in partially nonaqueous medium up to 25 % (v/v) methanol and ethanol. It exhibits a fast response time of 10 s. Selectivity coefficient values of various interfering ions were determined by the fixed interference method (FIM). The sensor reveals good selectivity for Pb(II) ions over other metal ions investigated. The developed sensor is used in the determination of lead in ‘Eveready battery waste’ and as an indicator electrode in the potentiometric titration of Pb(II) against EDTA.  相似文献   

4.
Separation of Ni2+ from ammonia/ammonium chloride solution using a flat-sheet supported liquid membrane (SLM) impregnated with Acorga M5640 in kerosene was investigated. The fundamental experimental variables influencing Ni2+ transport, such as ammonia concentration, carrier concentration, H2SO4 concentration in the stripping solution, stirring speed, and initial Ni2+ concentration were studied. Almost all of Ni2+ was transported from the feed to the stripping phase after 18 h of operation with a permeability coefficient of 9.28 × 10?6 m s?1 under optimum conditions: stirring speed of 1000 rpm in both phases, 20 vol.% Acorga M5640 as the carrier, 1.70 mmol L?1 Ni2+ in the feed phase and 0.10 mol L?1 H2SO4 in the stripping phase. The flux value of Ni2+ was 15.82 × 10?6 mol m?2 s?1. Additionally, the influences of temperature and ultrasound on flux were examined, and results indicated that higher temperature and ultrasonic assistance improved transport of Ni2+ through the SLM. Selective separation of nickel from cobalt in an ammonia/ammonium chloride solution was also achieved through SLM. The stability of the SLM was examined on a continuous run mode and satisfactory stability of the nickel permeation was observed for 84 h (7 runs).  相似文献   

5.
A Pb2+ ion selective membrane electrode based on poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) Zr(IV) monothiophosphate composite cation exchange material was fabricated using solution casting method. The effect of membrane composition on the proton exchange capacity was investigated by using varying amounts of electroactive material. The membrane with 250 mg of electroactive material and 10 µL of plasticiser exhibited higher proton conductivity. The optimised membrane composition was used for the fabrication of ion selective membrane electrode which exhibited typical Nernstian response towards Pb2+ ions in the concentration range 20.70 gL?1–20.7 µgL?1 (1 × 10–1–1 × 10–7 mol L?1) with a sub-Nernstian slope of 27.429 mV per decade change in Pb2+ ion concentration. The response time of the electrode under study for Pb2+ ions was found to be 11 s and the electrode can be used for 120 days without any considerable divergence in response potential. It can also be successfully used in the pH range from 3.0 to 6.5. It was found selective for Pb2+ ions in the presence of various monovalent, divalent and trivalent interfering metal ions. It was also employed as an indicator electrode in the potentiometric titration of Pb2+ ions using ethylenediaminetetraacetic acid, disodium salt, as a titrant.  相似文献   

6.
《Analytical letters》2012,45(7):1041-1055
Abstract

A polyvinyl chloride (PVC) membrane sensor for ytterbium(III) ions was prepared, based on 2,5-bis(5-tert-butyl-benzoxazol-2-yl)thiophene (BBT) as a membrane carrier. The sensor illustrates the following characteristics: a linear dynamic range of 1.0 × 10?6 to 1.0 × 10?2 M; a Nernstian slope of 19.7 ± 0.5 mV decade?1; a detection limit of 4.4 × 10?7 M; a response time of <10 s; and use for at least 2 months without any significant potential divergence in the pH range of 3.5–8.4. Moreover, the recommended selective sensor revealed a comparatively satisfactory selectivity regarding most of the alkali and alkaline earth ions and some of the transition-metal and heavy-metal ions. In fact, it was used as an indicator electrode in the Yb(III) potentiometric titration with ethylene diamine tetra-acetic acid (EDTA) and the determination of concentration of Yb(III) ions in soil and sediment samples.  相似文献   

7.
《Analytical letters》2012,45(4):595-606
A highly sensitive polyvinyl chloride (PVC) membrane electrode, based on copper(II)-bis(N-4-methylphenyl-salicyldenaminato) complex, (CuL2), as a carrier was reported for the determination of chromate ion. The influence of membrane composition, pH, and possible interfering anions on the response of the ion selective electrode was investigated. The sensor exhibited a Nernstian slope of 29.7 mV per decade when the chromate concentration was varied between 2.0 × 10?7–1.50 × 10?2 M in a wide pH range (6.0 to 9.0). The detection limit of the ion selective electrode was 9.2 × 10?8 M. The proposed sensor was used for at least 4 months without any considerable divergence in potential. It was applied as indicator electrode in potentiometric titration of chromate ion with Pb2+ and Tl+.  相似文献   

8.
《Analytical letters》2012,45(16):2972-2984
Abstract

The first asymmetric potentiometric Gd(III) microsensor is reported here. N-(2-Pyridyl)-N′-(4-nitrophenyl)thiourea (PyTu4NO2) was found to have a very selective and sensitive behavior toward Gd(III) ions, in comparison to other lanthanide ions as well as inner transition and representative metal ions and hence was used as a sensing material in the construction of a Gd(III) microelectrode. The Gd(III) sensor exhibits a Nernstian slope of 17.46 ± 0.3 mV per decade over the concentration range of 1.0 × 10?8 to 1.0 × 10?3 M and a detection limit of 3.0 × 10?9 M of Gd(III) ions. The potentiometric response of the sensor is independent of the solution pH in the range of 4.0–9.0. It manifests advantages of low detection limit and fast response time (10–15 s).  相似文献   

9.
《Analytical letters》2012,45(14):2727-2742
Abstract

This report describes an attempt to develop potentiometric Mg2+ sensors based on a liquid polymeric membrane. Membrane incorporating 4,5-Bis(benzoylthio)-1,3- dithiole-2-thione (Bz2dmit) as ionophore, with composition Bz2 dmit:NaTPB:NB:PVC in the ratio 2.5:2.5:65:30 (w/w), exhibits the best result for potentiometric sensing of Mg2+ ions. The proposed electrode, based on Bz2 dmitwith nitrobenzene (NB) as a solvent mediator in a polyvinyl chloride (PVC) membrane matrix, exhibited a near-Nernstian response to Mg2+ in the concentration range of 1.0 × 10?5 to 1.0 × 10?1 M, with a slope of 29.2 mV per decade of activity of Mg2+. The lower limit of detection was 1.0 × 10?5 M. This sensor showed high selectivity with respect to alkaline, alkaline earth, transition, and heavy metal ions, except for Sr2+, and could be used over a pH range of 3.5–9.0. It can be used for at least 2 mo without considerable divergence in potentials and has a relatively fast response of <10 s. It was applied successfully as an indicator electrode in potentiometric titration of Mg2+ ions with EDTA.  相似文献   

10.
《Electroanalysis》2003,15(19):1561-1565
A highly selective membrane electrode for the determination of ultratrace amounts of lead was prepared. The PVC membrane electrode based on 2‐(2‐ethanoloxymethyl)‐1‐hydroxy‐9,10‐anthraquinone (AQ), directly coated on graphite, exhibits a good Nernstian response for Pb(II) ions over a very wide concentration range (1.0×10?7–1.0×10?2 M) with a limit of detection of 8.0×10?8 M. It has a fast response time of ca. 10 s and can be used over a period 2 months with good reproducibility (SD=±0.2 mV). The electrode revealed a very good selectivity respect to common alkali, alkaline earth, transition and heavy metal ions and could be used in the pH range of 3.5–6.8. It was used as an indicator electrode in potentiometric titration of lead ions with chromate and oxalate, and in indirect determination of lead in spring water samples.  相似文献   

11.
Novel polymeric membrane electrode (PME) and coated graphite electrode (CGE) for nickel ion were prepared based on 2,9-(2-methoxyaniline)2-4,11-Me2-[14]-1,4,8,11-tetraene-1,5,8,12-N4 as a suitable neutral ionophore. The addition of lipophilic anion excluder (NaTPB) and various plasticizers viz o-nitrophenyloctylether (o-NPOE), dioctylphthalate (DOP), dibutylphthalate (DBP), 1-chloronaphthalene (CN) and tri-n-butylphosphate (TBP) have found to improve the performance of the sensors. The best performance was obtained for the membrane sensor having a composition of I:NaTPB:TBP:PVC in the ratio 6:4:100:90 (w/w; mg). The electrodes exhibit Nernstian slopes for Ni2+ ions over wide concentration ranges of 4.6 × 10?7–1.0 × 10?1 M for PME and 7.7 × 10?8–1.0 × 10?1 M for CGE with limits of detection of 2.7 × 10?7 M for PME and 3.7 × 10?8 M for CGE. The response time for PME and CGE was found to be 10 and 8 s respectively. The potentiometric responses are independent of the pH of the test solution in the pH range 3.0–8.0. The proposed electrodes revealed good selectivities over a wide variety of other cations including alkali, alkaline earth, transition and heavy metal ions. The coated graphite electrode was used as an indicator electrode in the potentiometric titration of nickel ion with EDTA and in direct determination in different fruit juices and wine samples.  相似文献   

12.
Abstract

Transport studies were carried out for carbonate ions through supported liquid membrane (SLMs) by using Alamine 336 and trioctylphosphine oxide (TOPO) as carriers. Experimental variables were investigated, such as concentration of carbonate ion (10?5 to 4×10?2 M), carriers (10?5 to 10?1 M), and alkali (0.01–0.5); and stirring speed (50–150 rpm) of bulk solutions. The use of combined carriers Alamine 336 and TOPO shows a synergic transport of carbonate ions. The stability of the SLM system in relation to the transport of carbonate ions has been studied. The enrichment of carbonate ions (10?6 to 4×10?2 M) from the dilute solution was explored. The different combinations of amines with TOPO show synergic permeability of the carbonate ions through SLM system.  相似文献   

13.
2-Thenoyltrifluoroacetone has been offered as a mobile carrier in organic phase for the transport and selective separation of yttrium from aqueous media using a liquid membrane system. Perceivably, the use of n-propylamine (PA) in the source phase enhances the transport of yttrium ions. The extraction and stripping conditions have entirely been evaluated and explained. The suggested method has been utilized for the separation of yttrium(III) from its binary mixtures with strontium(II) and some other cations such as Ni2+, Co2+, Ag+, Fe2+, Al3+, Cu2+, Hg2+and Cs+ in aqueous solutions of pH 5.4 in the presence of PA, while 1 M nitric acid was acting as a stripping agent in the receiving division. Cyanide ion and 5-sulfosalicylic acid have been used as masking agents to minimize the interferences from different transition metal ions and Al3+ in the source phase, respectively. 90Y in secular equilibrium with 90Sr in the source phase, was transferred to receiving phase and separated completely from its long-lived parent isotope. The activity of the transported 90Y was found to decay with a half-life 64.17 ± 0.05 h. The purity of yttrium-90 was comparable or better than the other applied liquid membrane systems for purification of yttrium-90.  相似文献   

14.
《Analytical letters》2012,45(15):2844-2859
Abstract

A novel approach to prepare homogeneous PbS nanoparticles by phase-transfer method was developed. The preparatory conditions were studied in detail, and the nanoparticles were characterized by transmission electron microscopy (TEM) and UV-vis spectroscopy. Then a novel lead ion-selective electrode of polyvinyl chloride (PVC) membrane based on these lead sulfide nanoparticles was prepared, and the optimum ratio of components in the membrane was determined. The results indicated that the sensor exhibited a wide concentration range of 1.0 × 10?5 to 1.0 × 10?2 mol·L?1. The response time of the electrode was about 10 s, and the optimal pH in which the electrode could be used was from 3.0 to 7.0. Selectivity coefficients indicated that the electrode was selective to the primary ion over the interfering ion. The electrode can be used for at least 3 months without any divergence in potential. It was successfully applied to directly determine lead ions in solution and used as an indicator electrode in potentiometric titration of lead ions with EDTA.  相似文献   

15.
《Analytical letters》2012,45(15):2444-2459
Abstract

Polymeric membrane electrodes (PMEs) and coated graphite electrodes (CGEs) containing 1,3,4-trisubstituted-2-azetidinone derivatives as ion carriers are reported here for bismuth(III) ion selectivity. These electrodes exhibited Nernstian response for Bi3+ ions over a wide concentration range (5.0 × 10?7 M to 1.0 × 10?1 M for CGE) with a lower detection limit of 3.98 × 10?7 M (for CGE) and wide pH range (1.3–5.0). Compared to polymeric membrane electrode, the coated graphite electrode has shown better selectivity for Bi3+ ions with respect to common metal ions. Proposed electrodes have been used for the estimation of Bi3+ ions in pharmaceutical and glass samples.  相似文献   

16.
《Analytical letters》2012,45(2):298-311
Abstract

A polyvinyl chloride (PVC) based membrane sensor for terbium ions was prepared by employing Hematoporphyrin (HP) as an ionophore. The sensor revealed a very good selectivity (expect for the Fe3+ion) with respect to common alkali, alkaline earth and heavy metal ions. The plasticized membrane electrode exhibits a Nernstian response for Tb3+ ions over a wide concentration range (1.0 × 10?6 ? 1.0 × 10?2 M) with a slope of 19.8±0.3 mV per decade and low detection limit of 7.4 × 10?7 M. The developed sensor was used in determination of F? in mouth wash preparation sample.  相似文献   

17.
《Electroanalysis》2004,16(16):1336-1342
The construction, performance characteristics, and application of polymeric membrane (PME) and coated graphite (CGE) thiocyanate‐selective electrodes are reported. The electrodes were prepared by incorporating the complex [Cu(L)](NO3)2 (L=4,7‐bis(3‐aminopropyl)‐1‐thia‐4,7‐diazacyclononane) into a plasiticized poly(vinyl chloride) membrane. The influence of membrane composition, pH of test solution, and foreign ions were investigated. The electrodes reveal Nernstian behavior over a wide SCN? ion concentration range (1.0×10?6–1.0×10?1 M for PME and 5.0×10?7–1.0×10?2 M for CGE) and show fast dynamic response times of 15 s and lower. The proposed sensors show high selectivity towards thiocyanate over several common organic and inorganic anions. They were successfully applied to the direct determination of thiocyanate in urine and saliva of smokers and nonsmokers, and as an indicator electrode in titration of Ag+ ions with thiocyanate.  相似文献   

18.
Transport of Pb(II) ion from equimolar aqueous solutions of Pb(II), Cu(II) and Cd(II) as well as from aqueous solutions containing only Pb(II) source phase (Cmetal = 1.0 × 10?4 mol L?1) through bulk liquid membranes containing crown ether and oleic acid as carrier has been investigated. The initial fluxes of transported metal ions depend on the hydrophile–lipophile balance (HLB) and molar volumes (Vx) of crown ethers. The initial fluxes of Pb(II), Cu(II), and Cd(II) decrease with increase of HLB value for azacrown ether, i.e., tetraaza-14-crown-4 (A414C4), L1 > benzo-15-crown-5 (B15C5), L2 > 4′-Aminobenzo-15C5, L3 > nitrobenzo-15-crown-5 (NB15C5), L4. The selectivity of the metal ions showed the following separation factors (SF): SFPb–Cu = 2.15, SFCu–Cd = 2.10, SFPb–Cd = 4.52. The highest transport recovery for Pb(II) was observed for L1 (99.3 %).  相似文献   

19.
《Analytical letters》2012,45(17):2838-2852
Abstract

2-Ethoxy-1-ethoxycarbonyl-1,2-dihydroquinoline (EED) was found to be a suitable neutral ionophore for the preparation of a highly selective samarium (Sm)(III) membrane sensor. Poly vinylchloride (PVC)–based membranes of EED with sodium tetraphenyl borate (NaTPB) as an anionic additive and dibutylphthalate (DBP), nitrobenzene (NB), and acetophenone (AP) as plasticizing solvent mediators were prepared and investigated as Sm(III) sensors. The sensor exhibited a Nernstian response over a concentration range of 1.0 × 10?6 to 1.0 × 10?2 M, with a detection limit of 5.0 × 10?7 M. The best performance was achieved with a membrane composition of 30% PVC, 66% dibutyl phthalate (DBP), 2% EED, and 2% sodium tetraphenyl borate (NaTPB). It has a very short response time, in the whole concentration range (~10s), and can be used for at least 10 weeks. The proposed electrode shows a very good selectivity toward Sm(III) ions over a wide variety of cations, including alkali, alkaline earth, transition-metal, and heavy-metal ions. The sensor was applied to the determination of Sm ions in binary mixtures.  相似文献   

20.
A macrocyclic ligand “7,10,13-triaza-1-thia-4,16-dioxa-20,24-dimethyl-2,3;17,18-dibenzo-cyclooctadecane-6,14-dione” as an efficient ionophore was used into a new Cu2+ nano-composite potentiometric carbon paste sensor containing multi-walled carbon nanotubes (MWCNTs), nanosilica particles, and room temperature ionic liquid (1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, [BMP]Tf2N). This potentiometric sensor responds to copper ions in a wide linear dynamic range of 4.50 × 10?8 to 1.00 × 10?2 mol L?1 with Nernstian slope of 29.64 ± 0.10 mV per decade. The detection limit of 2.34 × 10?8 mol L?1 was obtained at the pH range 3.5–6.0. It has a fast response with response time of about 10 s, and can be used for at least 16 weeks without any considerable divergence in the potentials. The suggested sensor thus allows sensitive, selective, simple, low cost, and stable electrochemical sensing of Cu2+ ions in the presence of a large number of alkali, alkaline earth, transition and heavy metal ions. This sensor was successfully applied in the determination of copper ions in water and waste water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号