首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermal dissociation of the [Co(NH3)6]X3 (X = Cl?, Br?, I?, and NO?3), [Co(en)3]X3 (X = Cl?, Br?, I?, NO?3, HSO?4 and 12 C2O2?4), cis- [Co(en)2Cl2]Cl, and trans-[Co(en)2ClBr]NO3 complexes was investigated by an electrical conductivity (EC) technique. During the thermal dissociation reactions, liquid or semi-liquid phases are formed which cause large increases in the EC of the compound. The effect of concentration of the complex in a matrix medium as well as the composition of the matrix material on the EC curves were also determined.  相似文献   

2.
3.
在G3XMP2//B3LYP/6-311+G(3df,2p)水平上对CH3SO3裂解反应的机理进行了研究, 获得了6 条通道(10 条路径), 并构建了其势能剖面. 同时采用单分子反应理论计算了各个通道在温度200-3000 K区间的速率常数. 研究结果表明, 在计算温度范围内, CH3SO3裂解反应的主产物为P1(CH3+SO3), 产物P2(CH3O+SO2)和P3(HCHO+HOSO)仅在温度大于3000 K时对总产物有贡献, 而产物P4(CHSO2+H2O), P5(CH2SO3+H)和P6(CHSO3+H2)贡献相对较少. 将裂解反应总的速率常数拟合为ktotal=1.40×1012T0.15exp(7831.58/T). 此外, 根据统计热力学原理, 预测了所有物种的生成焓(DfHΘ298 K, DfH0 K), 熵(SΘ298 K)和热容(Cp, 298-2000 K), 计算的结果与实验值较接近.  相似文献   

4.
Eight ionic organotin compounds [R2SnCl2(2-quin)](HNEt3)+ have been synthesized by reactions of 2-quinH with R2SnCl2 (R = PhCH21, 2-Cl-C6H4CH22, 4-Cl-C6H4CH23, 2-F-C6H4CH24, 4-F-C6H4CH25, 4-CN-C6H4CH26, Ph 7, 2,4-Cl2-C6H3CH28) in the presence of organic base NEt3, and their structures have been characterized by elemental analysis, IR and multinuclear NMR (1H, 13C, 119Sn) spectroscopies. The structure of [(2,4-Cl2-C6H3CH2)2SnCl2(2-quin)](NEt3)+ (8) has been determined by X-ray diffraction study. Studies show that compound 8 has a monomeric structure with the central tin atom six-coordinate in a distorted octahedral configuration and the nitrogen atoms of the 2-quin ligands are coordinating to the tin atom in all the eight compounds.  相似文献   

5.
An aqueous solution of (hydroxymethyl)triphosphine [(HOCH2)2P(CH2)2]2PCH2OH (II) was synthesized in situ by treatment of the triphosphine H2P(CH2)2PH(CH2)2PH2 with formaldehyde. Addition of a CH2Cl2 solution of trans-PdCl2(PhCN)2 to an in situ aqueous solution of II resulted in the formation of a species thought to be [PdCl{[(HOCH2)2P(CH2)2]2PCH2OH}]+Cl. Attempts to isolate the complex were unsuccessful because of conversion to material containing small amounts of phosphine oxide(s) formed via a redox reaction involving water. The triphosphine trioxide [(HOCH2)2P(O)(CH2)2]2P(O)CH2OH was readily isolated from an in situ solution of II by treatment with aqueous H2O2.  相似文献   

6.
In CH3CN solution at −30 °C, [TAS]+[P3N3F5NS(O)F] (2) is formed from TASF and P3N3F5NSO, the compound readily decomposes to give P3N3F6 and [TAS]+[NSO]. [TAS]+[P3N3F5NS(O)Cl] (3) and [TAS+]2 [{P4N4F6(NS(Cl)N)}2]2− (5) were prepared from TASCl and P3N3F5NSO and 1,5-P4N4F6(NSO)2, respectively, and characterised by X-ray crystallography.  相似文献   

7.
The potential energy around the PN bonds for the Cl3PNP(X)Cl2 (X = O, S) molecules and [Cl3PNPCl3]+ cation have been derived from MNDO (modified neglect of diatomic overlap) calculations. The most stable conformations are two s-trans isomers in nearly eclipsed forms. The calculated structural parameters agree well with the X-ray experimental data. Barriers of 6 and 1.5 kJ/mol for the rotations of the POCl2 and PCl3 groups are predicted. In addition, the Raman spectra and the qualitative depolarization measurements for these molecules in the liquid phase have been obtained. All the data indicate that the molecules exist as a mixture of two rotamers in the molten phase. These two conformers are stabilized in the crystal packing of Cl3PNP(O)Cl2. The observed frequencies are in good agreement with the calculated values obtained by normal coordinate analysis. The MNDO calculation of the harmonic force field is in reasonable agreement with the experimental values. The force-constant values assigned to the torsional modes around the PN bonds correspond to low barriers for the internal rotations. These easy internal rotations around the PN and PN bonds can explain the flexibility of the phosphazene backbone and the elastomeric properties of the polyphosphazene polymers.  相似文献   

8.
The cationic complexes [({Ph3P}2C)Ag(C{PPh3}2)]X (2+, X = Cl, BF4) with a linear arrangement of the ligands were obtained from the reaction of C(PPh3)2 (1) with the appropriate AgX in THF. The 31P NMR spectrum of the cation 2+ exhibits a doublet with J(Ag,P) = 15.3 Hz. The cation was also formed when the adduct O2C ← 1 was allowed to react with AgX in CH2Cl2 in the first step as shown by 31P NMR; however, deprotonation of the solvent finally produced the cation (HC{PPh3}2)+, (H1)+ quantitatively. In the absence of coordinating anions, the tricationic complex [({Ph3P}2CH)Ag(CH{PPh3}2)](BF4)3 (3), containing the cation (H1)+ as ligand, could be isolated by reacting AgBF4 with the salt (H1)(BF4). All compounds were characterized by IR and 31P NMR spectroscopy; the structures of the compounds [2]Cl·1.25THF, 3·5CH2Cl2, 3·4C2H4Cl2, and (H1)(BF4) could be established by X-ray analyses.  相似文献   

9.
35Cl NQR spectra of dichlorophosphates Me(PO2Cl2)2 · 2D (Me = Mg, Ca, Mn; D = CH3COOC2H5, CH3COCH3, POCl3) are studied in the temperature range 77 ? T (K) ? 305. It is shown that the three compounds with CH3COOC2H5 as donor are isomorphic at 77 K, the crystal structure of Mn(PO2Cl2)2· 2CH3COOC2H5. The structure of Mg(PO2Cl2)2?· 2CH3COCH3 and of Mg(PO2Cl2)2 · 2POCl3 probably consists of infinite chains as found for Mn(PO2Cl2)2· 2CH3COOC2H5. Mg(PO2Cl2)2· 2CH3COOC2H5 shows phase transformations and a complicated dynamical behaviour leading to strong deviations from a Bayertype NQR function v = f(T). The donor capacity of POCl3 in Mg(PO2Cl2)2· 2POCl3 is comparable with the donor strength in AsCl3 · POCl3 · A dπ-pπ overlap of the P-O bond influences the P-Cl bond.  相似文献   

10.
The following bond lengths and bond angles have been deduced from a vapour phase electron diffraction study of (CH3)2NSO2N(CH3)2: r(C-H) 1.114 ± 0.005 Å, r(S-O) 1.432 ± 0.010 Å, r(N-C) 1.475 ± 0.013 Å, r(S-N) 1.651 ± 0.003 Å, ∠N-C-H 109.3 ± 2.0°, ∠C-N-C 118.0 ± 302°, ∠S-N-C 115.2 ± 1.1°, ∠N-S-N 110.5±1.3° and ∠O-S-O 114.7±2.5°. The sulphur bond configuration and the prevailing conformation, which was identical to that in the crystal, are discussed in relation to analogous sulphide and sulphoxide derivatives.  相似文献   

11.
Solid solution investigations in the CsHSO4–CsH2PO4system, carried out as part of an ongoing effort to elucidate the relationship between proton conduction, hydrogen bonding, and phase transitions, yielded the new compound Cs5(HSO4)3(H2PO4)2. Single-crystal X-ray diffraction methods revealed that Cs5(HSO4)3(H2PO4)2crystallizes in space groupC2/c(or possiblyCc), has lattice parametersa=34.066(19) Å,b=7.661(4) Å,c=9.158(6) Å, andβ=90.44(6)°, a unit cell volume of 2389.9(24) Å3, a density of 3.198 Mg m−3, and four formula units in the unit cell. Sixteen non-hydrogen atoms and five hydrogen sites were located in the asymmetric unit, the latter on the basis of geometric considerations rather than from Fourier difference maps. Refinement using anisotropic temperature factors for all non-hydrogen atoms and fixed isotropic temperature factors for all hydrogen atoms yielded residuals based onF2(weighted) andFvalues, respectively, of 0.0767 and 0.0340 for observed reflections [F2>2σ(F2)]. The structure contains layers of (CsH2XO4)2that alternate with layers of (CsHXO4)3, whereXis P or S. The arrangement of Cs, H, andXO4groups within the two types of layers is almost identical to that in the end-member compounds, CsH2PO4and CsHSO4-II, respectively. Although P and S each reside on two of the threeXatom sites in Cs5(HSO4)3(H2PO4)2, the number of protons in the structure appears fixed. In addition, the correlation of S–O and S–OH bond distances with O···O distances, where the latter represents the distance between two hydrogen-bonded oxygen atoms, was determined from a review of literature data.  相似文献   

12.
Ph2P(O)C(S)N(H)R (R  Me, Ph) reacts with M(CO)35-C5H5)Cl (M  Mo, W) in the presence of Et3N to give M(CO)25-C5H5)(Ph2P(O)C(S)NR). The deprotonated ligand coordinates in a bidentate manner through N and S to give a four-membered ring system. M(CO)3(PPh3)2Cl2 (M  Mo, W) reacts with Ph2P(O)C(S)N(H)R (R  Me, Ph) in the presence of Et3N to give complexes in which the central metal atoms are seven coordinate through two ligands bonded via O and S to form five-membered ring systems, one PPh3, and two CO groups. The complexes were characterised by elemental analyses, IR, 1H NMR, and 31P NMR spectroscopy, and an X-ray structural analysis of Mo(CO)2(PPh3)(Ph2P(O)C(S)NPh)2 · CH2Cl2.  相似文献   

13.
The 13P and 13C spectra of the triply 13C labelled molecules (CH3)3P, (CH3)3PO, (CH3)3PS and (CH3)3PSe oriented in a nematic phase are reported. The CPC bond angles have been measured. The 13P chemical shift tensor shows a large anisotropy except in the case of (CH3)3P. The abnormal large value observed for the PSe bond length suggests a large anisotropy of the 1J(PSe) spin coupling.  相似文献   

14.
The zinc fluoro phosphate Zn2F(PO4) has been produced by hydrothermal synthesis employing hydrofluoric acid as a mineralizer in a H2O or D2O medium. A single-crystal X-ray synchrotron diffraction analysis of Zn2F(PO4) shows that the zinc fluoro phosphate is monoclinic, a=9.690(1), b=12.793(1), and c=11.972(1) Å, β=108.265(1)°, space group P21/c, No. 14, Z=16. Reflections hkl with k=2n+1 are weak but significant and the structure shows pseudosymmetry. Zn2F(PO4) has the wagnerite-type M2F(XO4) structure with four Zn atoms each coordinated to four O atoms and one F atom while four other Zn atoms are coordinated to four O atoms and two F atoms. A difference Fourier map, calculated from the single-crystal X-ray data, shows additional electron density close to the four fluorine atoms, indicating a possible partial substitution of F by OH ions. This is unambiguously confirmed by 31P-{1H} cross-polarization magic-angle spinning (MAS) and by 1H/2H MAS NMR spectroscopy. The narrow line width observed for the 1H resonance and the unique set of 2H quadrupole coupling parameters (obtained for the Zn2F(PO4) sample using D2O as medium) show that 1H/2H is present as OH(D) groups rather than as water of crystallization in the structure. Quantitative 1H MAS NMR analysis shows that the composition of the sample is Zn2(OH)0.14(3)F0.86(3)(PO4). The high-speed 19F MAS NMR spectrum exhibits two resolved resonances with equal intensity, which are ascribed to an overlap of resonances from the four distinct fluorine sites in Zn2(OH)0.14(3)F0.86(3)(PO4).  相似文献   

15.
1,2-Eliminations are a varied and extensive set of dissociations of ions in the gas phase. To understand better such dissociations, elimination of CH2=CH2 and CH3CH3 from (CH3)2NH+CH2CH3 (1) and of CH4 from (CH3)2NH2+ are characterized by quantum chemical calculations. Stretching of the CN bond to ethyl is followed by shift of an H from methyl to the bridging position in ethyl and then to N to reach (CH3)2NH2+ + CH2=CH2 from 1. CH3CH3 elimination by H-transfer to C2H5+ to form CH3NH+=CH2 + CH3CH3 also takes place. (CH3)2NH2+ eliminates methane by CN bond extension followed by β-H-transfer to give CH2=NH+ + CH4. Low-energy reactions resembling complex-mediated 1,2-eliminations occur and constitute a hitherto largely unrecognized type of reaction. As in many complex-mediated reactions, these reactions transfer H between incipient fragments. They are distinguished from complex-mediated processes by the fragments not being able to rotate freely relative to each other near the transition state for reaction, as they do in complexes. Most 1,2-eliminations are ion-neutral complex-mediated, occur by the just described lower energy reactions, have 1,1-like transition states, or utilize highly asynchronous 1,2 transition states. All of these avoid synchronized 1,2-transition states that would violate conservation of orbital symmetry.  相似文献   

16.
The fluorocarbon soluble, binuclear ruthenium(I) complexes [Ru(μ-O2CMe)(CO)2LF]2, where LF is the perfluoroalkyl substituted tertiary phosphine, P(C6H4-4-CH2CH2(CF2)7CF3)3, or P(CH2CH2(CF2)5CF3)3, were synthesized and partition coefficients for the complexes in fluorocarbon/hydrocarbon biphases were determined. Catalytic hydrogenation of acetophenone to 1-phenylethanol in benzotrifluoride at 105 °C occured in the presence of either [Ru(μ-O2CMe)(CO)2P(C6H4-4-CH2CH2(CF2)7CF3)3]2 (1) or [Ru(μ-O2CMe)(CO)2P(CH2CH2(CF2)5CF3)3]2 (2). The X-ray crystal structure of [Ru(μ-O2CMe)(CO)2P(CH2CH2(CF2)5CF3)3]2 was determined. The compound exhibited discrete regions of fluorous and non-fluorous packing.  相似文献   

17.
Chemiluminescence from the b 0+ → X1 0+ band system of AsI and of the b 0+ → X1 0+, X2 1 systems of SbI in the near-infrared spectral region has been observed in a discharge flow system. Analysis of the spectra led to the spectroscopic constants (in cm?1) of AsI: ωe(X1, X2) = 257 ± 2, ωexe(X1, X2) = 0.82 ± 0.2, Te(b 0+) = 11738 ± 5, ωe(b 0+) = 271 ± 2, ωexe(b 0+) = 0.66 ± 0.2, and of SbI: Te(X2 1) = 965 ± 10, ωe(X1, X2) = 206 ± 6, Te(b 0+) = 12328 ± 10, ωe(b 0+) = 211 ± 6. The intensity ratio of the two sub-systems b 0+ → X2 1 and b 0+→ X1 0+ was found to be ≈0.013 in the case of SbI and ? 0.01 for AsI.  相似文献   

18.
采用G3B3方法构建反式2-甲基-2-丁烯酸甲酯与O3反应体系以及后续Criegee自由基有、无水分子参与下异构化反应的势能面剖面.结果表明,反式2-甲基-2-丁烯酸甲酯与O3反应首先生成一个稳定的五元环中间体,此中间体按断键位置不同后续裂解反应存在两条路径,分别生成产物P1(CH3CHOO+CH3OC(O)C(CH3)O)和P2(CH3CHO+CH3OC(O)C(CH3)OO).利用经典过渡态理论(TST)并结合Wigner矫正模型计算了200-1200 K温度区间内标题反应的速率常数kTST/W.计算结果显示,294 K时,该反应速率常数为7.55×10-18cm3molecule-1s-1,与Bernard等对类似反应所测实验值非常接近.生成的Criegee自由基(CH3CHOO和CH3OC(O)C(CH3)OO)可分别与水分子发生α-加成及β-氢迁移反应,其中Criegee自由基与水的α-加成反应较其与水的β-氢迁移反应具有优势.另外与无水分子参与CH3CHOO和CH3OC(O)C(CH3)OO异构化反应相比,水分子的参与使得异构化反应较为容易进行.  相似文献   

19.
The salt, [N(CH3)4][IO2F2], was prepared from [N(CH3)4][IO3] and 49% aqueous HF, and characterized by Raman, infrared, and 19F NMR spectroscopy. Crystals of [N(CH3)4]2[IO2F2][HF2] were obtained by reduction of [N(CH3)4][cis-IO2F4] in the presence of [N(CH3)4][F] in CH3CN solvent and were characterized by Raman spectroscopy and single-crystal X-ray diffraction: C2/m, a = 14.6765(2) Å, b = 8.60490(10) Å, c = 13.9572(2) Å, β = 120.2040(10)°, V = 1523.35(3) Å3, Z = 4 and R = 0.0192 at 210 K. The crystal structure consists of two IO2F2 anions that are symmetrically bridged by two HF2 anions, forming a [F2O2I(FHF)2IO2F2]4− dimer. The symmetric bridging coordination for the HF2 anion in this structure represents a new bonding modality for the bifluoride anion.  相似文献   

20.
Nitriles react with PF5 and also with AsF5, SbF5 forming 1:1-adducts. Using C2Cl3F3 as a solvent is of advantage for this reaction. PF5·CH3CN and [N(C2H5)4]SH give [N(C2H5)4][P2S2F8] with a sulfur double bridge and hexafluorophosphate in acetonitrile [1]. In case of AsF5·CH3CN a salt with the anion [AsF5NHCSCH3]? has been isolated [2]. Following products have been confirmed in a reaction mixture of PF5·CH3CN and SH? in acetonitrile by NMR (31P and 19F): [PF6]?, [F5PSPF5]2?,
, F4PSH, F3PS, HPS2F2, [PS2F2]?, [F5PNC(SH)CH3]?, [F5PNHCSCH3]?, [F5PSH]?. With a ratio PF5·CH3CN: SH? = 2:1 the S-bridge-complexes are prefered whereas in case of a ratio 1:1 the non-bridged P-complexes are the main products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号