首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The electrical and optical properties of the chalcogenide semiconductor (Se32Te32As4Ge32)100?xNixitx have been studied. As the Ni concentration is increased the electrical dc conductivity is drastically increased and variable range hopping conduction becomes dominant even above room temperature. The optical energy gap decreases with the Ni concentration from 1.18–0.95 eV. Ni-atoms in the chalcogenide semiconductor donate free electrons which occupy the gap state. This occupation causes the shift of the Fermi level toward the conduction band. It is an effect of this shift that the thermal activation energy is decreased. The decrease in optical energy gap is independent of the shift of the Fermi level and is ascribable to the appearance of the additional level located at 0.95 eV above the top of the valence band. This level originates from the 3d-level of the Ni-atom.  相似文献   

2.
Muneer Ahmad  J. Kumar  R. Thangaraj   《Journal of Non》2009,355(48-49):2345-2348
Chalcogenide glasses are interesting materials due to their infrared transmitting properties and photo-induced effects exhibited by them. Thin films of the glasses Sn10Sb20−xBixSe70 (0 x 8) prepared by melt quenching technique were evaporated in a vacuum better than 10−5 mbar. Optical transmission spectra of all the deposited films were obtained in a range 400–2500 nm. The optical band gap and the absorption coefficient were calculated from the transmission data and refractive index was calculated using the swanepoel method. The optical band gap initially increases with increase in Bi content (for x = 2) and then decreases sharply for higher Bi concentrations. The refractive index as well as absorption coefficient decrease with increase in wavelength. The dark activation energy initially increases with increase in Bi content and then decreases with further addition.  相似文献   

3.
Thin film wide band gap p-type hydrogenated amorphous silicon (a-Si) oxide (p-a-SiOx:H) materials were prepared at 175 °C substrate temperature in a radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) and applied to the window layer of a-Si solar cell. We used nitrous oxide (N2O), hydrogen (H2), silane (SiH4), and diborane (B2H6) as source gases. Optical band gap of the 1% diborane doped films is in the range of 1.71 eV to 2.0 eV for films with increased oxygen content. Dark conductivity of these films is in the range of 8.7 × 10− 5 S/cm to 5.1 × 10− 7 S/cm. The fall in conductivity, that is nearly two orders of magnitude, for about 0.3 eV increase in the optical gap can be understood with the help of Arrhenius relation of conductivity and activation energy, and may not be significantly dependant on defects associated to oxygen incorporation. Defect density, estimated from spectroscopic ellipsometry data, is found to decrease for samples with higher oxygen content and wider optical gap. Few of these p-type samples were used to fabricate p-i-n type solar cells. Measured photo voltaic parameters of one of the cells are as follows, open circuit voltage (Voc) = 800 mV, short circuit current density (Jsc) = 16.3 mA/cm2, fill-factor (FF) = 72%, and photovoltaic conversion efficiency (η) = 9.4%, which may be due to improved band gap matching between p-a-SiOx:H and intrinsic layer. Jsc, FF and Voc of the cell can further be improved at optimized cell structure and with intrinsic layer having a lower number of defects.  相似文献   

4.
The p-type Si layer in a-Si and μc-Si solar cells on foil needs to fulfil several important requirements. The layer is necessary to create the electric field that separates the photo-generated charge carriers; the doping also increases the conductivity to conduct the photocurrent to the front contact; on the other hand, the p-layer should transmit the incident light efficiently to the intrinsic absorber layer. We show that it is possible to study TEM samples prepared, for analysis of possible layer defects, by focussed ion beam milling to detect boron and carbon concentrations as low as 1020 cm-3, using core-loss EELS combined with numerical analysis. We control the band gap and activation energy of p-a-SiC by varying the B2H6 and CH4 flow during deposition in the process chamber. We have found a linear relation between the activation energy of the dark conductivity Eact and the optical band gap E04. Modelling shows that the optimum efficiency in nip solar cells is obtained when the p-a-SiC band gap is slightly larger than the band gap of the absorber layer. We have assessed the potential of core-loss EELS for detecting B and C concentrations as low as 1020 cm-3 in a spatially resolved manner, and of low-loss EELS as a probe of the local variations in plasmon energy.  相似文献   

5.
D. Singh  S. Kumar  R. Thangaraj 《Journal of Non》2012,358(20):2826-2834
Optical and electrical properties of the (Se80Te20)100 ? xAgx (0  x  4) ultra-thin films have been studied. The ultra-thin films were prepared by thermal evaporation of the bulk samples. Thin films were annealed below glass transition temperature (328 K) and in between glass transition temperature and crystallization temperature (343 K). Thin films annealed at 343 K showed crystallization peaks for Se–Te–Ag phases in the XRD spectra. The transmission and reflection of as-prepared and annealed ultra-thin films were obtained in the 300–1100 nm spectral region. The optical band gap has been calculated from the transmission and reflection data. The refractive index has been calculated by the measured reflection data. It has been found that the optical band gap increases, but the refractive index, extinction coefficient, real and imaginary dielectric constant decrease with increase in Ag content. The optical band gap and refractive index show the variation in their values with increase in the annealing temperature. The extinction coefficient increases with increasing annealing temperature. The surface morphology of ultra-thin films has been determined using a scanning electron microscope (SEM). The measured dc conductivity, under a vacuum of 10? 5 mbar, showed thermally activated conduction with single activation energy in the measured temperature range (288–358 K) and it followed Meyer–Neldel rule. The dc activation energy decreases with increase in Ag content in pristine and annealed films. The results have been analyzed on the bases of thermal annealing effects in the chalcogenide thin films.  相似文献   

6.
Absorption spectra of V2O5 layers deposited from gels of various V4+ contents C were studied from near UV down to near IR. The high absorption region due to the charge transfer transition extends above ≈ 2 eV. Whatever C the optical gap is ≈ 2.25 eV. On the low energy side an Urbach tail is observed whose slope increases with C. In the near infrared absorption is related to the V4+ ions and increases linearly with C. The absorption band due to the optically induced polaron hopping is detected. The corresponding maximum Emax suffers a red shift when C increases. The experimental Emax data are very close to the values predicted from the polaron and disorder energies as deduced from the conductivity study in an earlier paper. The slight difference between the two sets of data allowed us to estimate the transfer integral J ≈ 0.015 eV.  相似文献   

7.
We have studied the low-temperature growth of gallium nitride arsenide (GaN)As layers on sapphire substrates by plasma-assisted molecular beam epitaxy. We have succeeded in achieving GaN1−xAsx alloys over a large composition range by growing the films much below the normal GaN growth temperatures with increasing the As2 flux as well as Ga:N flux ratio. We found that alloys with high As content x>0.1 are amorphous and those with x<0.1 are crystalline. Optical absorption measurements reveal a continuous gradual decrease of band gap from ∼3.4 to ∼1.35 eV with increasing As content. The energy gap reaches its minimum of ∼1.35 eV at x∼0.6–0.7. The structural, optical and electrical properties of these crystalline/amorphous GaNAs layers were investigated. For x<0.3, the composition dependence of the band gap of the GaN1−xAsx alloys follows the prediction of the band anticrossing model developed for dilute alloys. This suggests that the amorphous GaN1−xAsx alloys have short-range ordering that resembles random crystalline GaN1−xAsx alloys.  相似文献   

8.
Silicon nanocrystals (Si-NCs) with different sizes embedded in SiO2 matrix were synthesized by phase separation and thermal crystallization of SiOx/SiO2 supperlattice approach. The optical constants and band gap expansion of Si-NCs have been investigated by spectroscopic ellipsometry, based on the Maxwell–Garnett effective medium approximation and the Forouhi–Bloomer optical dispersion model. Similar spectra shapes but smaller values of Si-NCs optical constants with respect to bulk crystalline Si is observed. With the size of Si-NCs decreasing from 6 nm to 2 nm, the band gap increases from 1.64 eV to 2.56 eV. The band gap expansion, as compared to bulk crystalline Si, which agrees with the prediction of first-principles calculations based on quantum confinement effect, is presented in this paper.  相似文献   

9.
E.A. El-Sayad 《Journal of Non》2008,354(32):3806-3811
Thin films of Sb2Se3−xSx solid solutions (x = 0, 1, 2, and 3) were deposited by thermal evaporation of presynthesized materials on glass substrates held at room temperature. The films compositions were confirmed by using energy dispersive analysis of X-rays (EDAX). X-ray diffraction studies revealed that all the as-deposited films as well as those annealed at Ta < 423 K have amorphous phase. The optical constants (n, k) and the thickness (t) of the films were determined from optical transmittance data, in the spectral range 500-2500 nm, using the Swanepoel method. The dispersion parameters were determined from the analysis of the refractive index. An analysis of the optical absorption spectra revealed an Urbach’s tail in the low absorption region, while in the high absorption region an indirect band gap characterizes the films with different compositions. It was found that the optical band gap energy increases quadratically as the S content increases.  相似文献   

10.
Amorphous films of Sb1?xTex, where 0.11 ? x ? 0.86, have been prepared by coevaporation. Crystallization temperatures occur near room temperature for all compositions and appear to depend on film thickness. The optical and transport properties have been investigated as a function of temperature. Optical band gaps at room temperature, Eg, ranged between 0.3 and 0.7 eV and decreased non-linearly with temperature. For the composition Sb2Te3, Eg ≈ 0.7 eV, in contrast to the semimetallic character of the crystalline form. All compositions were p-type with the Fermi level close to the middle of the gap. The results have been interpreted in terms of the chemical bonding.  相似文献   

11.
Conductivity and thermoelectric power measurements have been made as a function of temperature on a series of hydrogenated amorphous silicon samples. The samples were prepared by the dc glow discharge decomposition of silane and silane phosphine mixtures. The activation energy for conduction varied with the substrate temperature and discharge condition for undoped specimens. The difference in the activation energy for conduction as well as the dependence of photoconductivity and optical gap on the activation energy for conduction among undoped specimens can be explained by introducing centers acting as donors or by change transfer between the island and hydrogen rich interfacial region. The kinks in the log σ versus inverse temperature curves always appear at about 430 K for the undoped specimens prepared at 300°C, while they are absent for low substrate temperature specimens. The downward kinks with increasing temperature can be explained by a two-phase material model. A revised two-channel conduction path model including material heterogeneity is applied to interpret the conductivity and thermopower versus inverse temperature curves of doped a-Si:H films, and to determine the position of phosphorus donor levels. The levels are found to lie at about 0.47 eV below Ec, the mobility edge at the conduction band.  相似文献   

12.
The V–VI group narrow band gap compounds are known to have important photoconductivity and thermoelectric properties. Among these, Bi2Te3 is the most potential material for thermoelectric devices having a direct band gap of 0.16 eV. There has been ample study reported on crystal growth and polycrystalline thin films of both pure and indium doped Bi2Te3 pertaining to its basic semiconducting, optoelectronic and thermoelectric properties. It has been shown that on exceeding certain limiting concentration of indium in Bi2Te3, the conductivity changes from p-type to n-type. However, there is hardly any work reported in literature on crystal growth, dislocation etching and optical band gap of InxBi2?xTe3 (x=0.1, 0.2, 0.5) single crystals. The authors have grown their single crystals using the zone melting method. The freezing interface temperature gradient of 70 °C/ cm?1 has been found to yield the best quality crystals obtainable at the growth rate of 0.4 cm/h. The as-grown crystals have been observed to exhibit certain typical features on their top free surfaces. The crystals have been characterized using XRD technique. A chemical dislocation etchant has been used for estimating perfection in terms of dislocation density in the crystals. The optical absorption was measured in the wave number range 500 to 4000 cm?1. The transitions in all the cases were observed to be allowed direct type. The detailed results are reported in the paper.  相似文献   

13.
The optical absorption spectra of xPbO-(100 − x) P2O5 glasses where x = 5, 10, 15, 20, 25, and 30 is reported. The spectral absorption of these glasses was measured in the spectral range 300-900 nm at room temperature. Optical absorption spectra show that the absorption edge has a tail extending towards lower energies. The edge shifts nearly linearly towards higher energies with increasing PbO content. The degree of the edge shift was found to depend on the PbO content and is mostly related to the structural rearrangement and the relative concentrations of the glass basic units. The optical energy gap increases, from 2.55 to 3.05 eV by increasing PbO content from 5 to 30 mol%. The width of the localized states is decreased by increasing PbO content.  相似文献   

14.
The optical properties of the Ga0.75In0.25Se crystals have been investigated by means of transmission and reflection measurements in the wavelength range of 380–1100 nm. The analysis of the results performed at room temperature revealed the presence of optical indirect transtions with band gap energy of 1.89 eV. The variation of the band gap energy as a function of temperature was also studied in the temperature range of 10–300 K. The rate of change of band gap energy (γ = –6.2 × 10–4 eV/K) and absolute zero value of the band gap (Egi(0) = 2.01 eV) were reported. The wavelength dependence of the refractive index was analyzed using Wemple and DiDomenico, Sellmeier and Cauchy models to find the oscillator energy, dispersion energy, oscillator strength and zero‐frequency refractive index values. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
The electrical and optical properties of a-SiNx:H thin films prepared by rf growth-discharge in SiH4N2H2 without B or P doping have been measured for 0 < x ? 0.6. It is observed that the activation energy for extended-state electron conduction as well as the optical gap are unaffected by N content for x ? 0.4. The electron mobility in extended states is improved by as much as a factor of 10 by the N incorporation. There is a rapid conversion from the tetrahedral network to a Si3N4 network as x increases above ≈ 0.4.  相似文献   

16.
采用第一性原理计算方法,对本征Mn4Si7以及P和As掺杂的Mn4Si7的电子结构和光学性质进行计算解析。计算结果表明本征Mn4Si7是带隙值为0.810 eV的间接带隙半导体材料,P掺杂Mn4Si7的带隙值增大为0.839 eV,As掺杂Mn4Si7的带隙值减小为0.752 eV。掺杂使得Mn4Si7的能带结构和态密度向低能方向移动,同时使得介电函数的实数部分在低能区明显增大,虚数部分几乎全部区域增加且8 eV以后趋向于零。此外掺杂还增加了高能区的消光系数、吸收系数、反射系数以及光电导率,明显改善了Mn4Si7的光学性质。  相似文献   

17.
We report on the development of p-type μc-SiOx:H material, in particular the relationship between the deposition parameters and the material properties like band gap, electrical conductivity, and crystalline volume fraction. The material was deposited from gas mixtures of silane, carbon dioxide and hydrogen by RF-PECVD. The gas flows were varied systematically to evaluate their influence on the material properties. An increase of the oxygen content in the material disturbs the crystalline growth. This can be counteracted by appropriate hydrogen dilutions. Materials with a combination of reasonably high conductivity of 4 × 10? 6 S/cm at a high optical band gap E04 of 2.56 eV and a refractive index of 1.95 are obtained. Applied in single junction μc-Si:H pin solar cells the improved properties of the μc-SiOx:H p-layers are reflected in higher quantum efficiency in the short wavelength range by 10% compare to cells without adding CO2 during p-layer deposition.  相似文献   

18.
Chalcogenide bulk glasses Ge20Se80?xTex for x  (0, 10) have been prepared by systematic replacement of Se by Te. Selected glasses have been doped with Er and Pr, and all systems have been characterized by transmission spectroscopy, measurements of dc electrical conductivity and low-temperature photoluminescence. Absorption coefficient has been derived from measured transmittance and estimated reflectance. Both absorption and low-temperature photoluminescence spectra reveal shifts of absorption edge and/or dominant luminescence band to longer wavelength due to Te  Se substitution. Arrhenius plots of dc electrical conductivity, in the temperature range 300–450 K, are characterized by activation energies roughly equal to the half of the optical gap. Arrhenius plots for temperatures below 300 K yield much lower activation energies. The dominant low-temperature luminescence band centered at about half the band gap energy starts to quench above 200 K and a new band appears at 900 nm. The band at 900 nm, due to band to band transitions, overwhelms the spectra at room temperature. Systems doped with Er exhibit a strong luminescence due to 4I13/2  I15/2 transition of Er3+ ion at 1539 nm, and Pr doped samples exhibit a relatively weak luminescence peak at 1590 nm, which we tentatively assign to 3F3  3H4 transition of Pr3+ ion.  相似文献   

19.
The optical properties of the TlInS2xSe2(1‐x)mixed crystals (0.25 ≤ x ≤ 1) have been investigated through the transmission and reflection measurements in the wavelength range of 400–1100 nm. The optical indirect band gap energies were determined by means of the analysis of the absorption data. It was found that the energy band gaps decrease with the increase of selenium atoms content in the TlInS2xSe2(1‐x)mixed crystals. The transmission measurements carried out in the temperature range of 10–300 K revealed that the rates of change of the indirect band gaps with temperature are γ = –9.2×10–4 eV/K, –6.1×10–4 eV/K, –4.7×10–4 eV/K and –5.6×10–4 eV/K for TlInS2, TlInS1.5Se0.5, TlInSSe and TlInS0.5Se1.5 crystals, respectively. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
H. Miyazaki  T. Goto 《Journal of Non》2006,352(4):329-333
In this study, SiOx thin films were prepared using reactive radio frequency magnetron sputtering at room temperature with a SiO sintered target. The obtained SiOx films were identified using X-ray diffraction, transmission electron microscopy, infrared absorption spectroscopy, X-ray photoelectron spectroscopy and ultraviolet-visible transmittance measurement. The x in SiOx film was controlled from 0.98 to 1.70 by changing the oxygen flow ratio at deposition. Increasing the oxygen flow ratio increased the optical gap of the SiOx films from 3.7 to greater than 6 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号