首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Single crystals of the compound K8[(UO2)2(C2O4)2(SeO4)4] · 2H2O (I) are synthesized, and their structure is investigated using X-ray diffraction. Compound I crystallizes in the monoclinic system with the unit cell parameters a = 14.9290(4) ?, b = 7.2800(2) ?, c = 15.3165(4) ?, β = 109.188(1)°, V = 1572.17(7) ?3, space group P21/n, Z = 2, and R = 0.0297. The uranium-containing structural units of crystals I are dimers of the composition [(UO 2)2(C2O4)2(SeO4)4]8−, which belong to the crystal-chemical group AB 01 B 2 M 1 (A = UO22+, B 01 = C2O42−, B 2 = SeO42−, M 1 = SeO42−) of the uranyl complexes. The [(UO2)2(C2O4)2(SeO4)4]8− dimers are joined into a three-dimensional framework through electrostatic interactions with the outer-sphere potassium cations. Original Russian Text ? L.B. Serezhkina, E.V. Peresypkina, A.V. Virovets, A.G. Verevkin, D.V. Pushkin, 2009, published in Kristallografiya, 2009, Vol. 54, No. 1, pp. 68–71.  相似文献   

2.
Single crystals of the compound {NH2(C2H5)2}2[(UO2)2C2O4(CH3COO)4] · 2H2O (I) are synthesized, and their structure is investigated using X-ray diffraction. Compound I crystallizes in the monoclinic system with the unit cell parameters a = 9.210(2) ?, b = 14.321(3) ?, c = 12.659(3) ?, β = 105.465(13)°, V = 1609.2(6) ?3, space group P21/c, Z = 2, and R = 0.0198. The structural units of crystals I are binuclear groups of the composition [(UO2)2C2O4(CH3COO)4]2− with an island structure, which belong to the crystal-chemical group A 2 K 02 B 401 (A = UO22+, K 02 = C2O42−, B 01 = CH3COO) of the uranyl complexes, diethylammonium cations, and water molecules. The uranium-containing groups are joined into a three-dimensional framework through electrostatic interactions with diethylammonium cations and a system of hydrogen bonds, which are formed with the participation of the atoms involved in the composition of the water molecules, oxalate ions, acetate ions, and diethylammonium cations. Original Russian Text ? L.B. Serezhkina, A.V. Vologzhanina, N.A. Neklyudova, V.N. Serezhkin, 2009, published in Kristallografiya, 2009, Vol. 54, No. 1, pp. 65–67.  相似文献   

3.
Single crystals of the compound K2[(UO2)4(O)2(OH)2(C2O4)(CH3COO)2(H2O)2]·2H2O (I) are synthesized, and their structure is investigated using X-ray diffraction. Crystals of compound I belong to the triclinic system with the unit cell parameters a = 7.6777(6) ?, b = 7.9149(7) ?, c = 10.8729(9) ?, α = 72.379(2)°, β = 86.430(3)°, γ = 87.635(2)°, V = 628.33(9) ?3, space group P , Z = 1, and R 1 = 0.0323. The main structural units of the crystals are [(UO2)4(O)2(OH)2(C2O4)(CH3COO)2(H2O)2]2− chains, which belong to the crystal-chemical group A 4 M 23 M 22 K 02 B 201 M 21 (A = UO22+, M 3 = O2−, M 2 = OH, K 02 = C2O42−, B 01 = CH3COO, M 1 = H2O) of the uranyl complexes. The chains are formed by linking the centrosymmetric tetramers of the composition (UO2)4(O)2(OH)2(CH3COO)2(H2O)2 via tetradentate bridging oxalate ions. The uranium-containing groups are joined into a three-dimensional framework through the electrostatic interaction with potassium cations and a system of hydrogen bonds, which are formed with the participation of atoms involved in the composition of the water molecules, hydroxide ions, and uranyl ions. Original Russian Text ? L.B. Serezhkina, A.V. Vologzhanina, N.A. Neklyudova, V.N. Serezhkin, 2009, published in Kristallografiya, 2009, Vol. 54, No. 3, pp. 483–487.  相似文献   

4.
Three Sr2+ compounds with the Edta 4− and H2 Edta 2− ligands—Sr2(Edta) · 5H2O (I), Sr2(H2 Edta)(HCO3)2 · 4H2O (II), and Sr2(H2 Edta)Cl2 · 5H2O (III)—are synthesized, and their crystal structures are studied. In I, the Sr(1) atom is coordinated by the hexadentate Edta 4− ligand following the 2N + 4O pattern and by two O atoms of the neighboring ligands, which affords the formation of zigzag chains. The Sr(2) atom forms bonds with O atoms of five water molecules and attaches itself to a chain via bonds with three O atoms of the Edta 4− ligands. The Sr(1)-O and Sr(2)-O bond lengths fall in the ranges 2.520(2)–2.656(3) and 2.527(3)–2.683(2) ?, respectively. The Sr(1)-N bonds are 2.702(3) and 2.743(3) ? long. In II and III, the H2 Edta 2− anions have a centrosymmetric structure with the trans configuration of the planar ethylenediamine fragment. The N atoms are blocked by acid protons. In II, the environment of the Sr atom is formed by six O atoms of three H2 Edta ligands, two O atoms of water molecules, and an O atom of the bicarbonate ion, which is disordered over two positions. In III, the environment of the Sr atom includes six O atoms of four H2 Edta 2− ligands and three O atoms of water molecules. The coordination number of the Sr atoms is equal to 8 + 1. In II and III, the main bonds fall in the ranges 2.534(3)–2.732(2) and 2.482(2)–2.746(3) ?, whereas the ninth bond is elongated to 2.937(3) and 3.055(3) ?, respectively. In II, all the structural elements are linked into wavy layers. The O-H…O interactions contribute to the stabilization of the layer and link neighboring layers. In III, hydrated Sr2+ cations and H2 Edta anions form a three-dimensional [Sr2(H2 Edta)(H2O)3] n 2n+ framework. The Cl anions are fixed in channels of the framework by hydrogen bonds with four water molecules. In II and III, the N-H groups form four-center N-H…O3 hydrogen bonds, which include one intermolecular and two intramolecular components. PACS numbers: 61.66.Hq Original Russian Text ? I.N. Polyakova, A.L. Poznyak, V.S. Sergienko, 2009, published in Kristallografiya, 2009, Vol. 54, No. 2, pp. 262–267.  相似文献   

5.
[NH3(CH2)3NH3]2[Ni(HP2O7)2(H2O)2] 4H2O (NiDAP) is a new diphosphate of transition metallic and organic cations obtained from a mixture of H4P2O7, 2NiCO3 Ni(OH)2 4H2O and NH2(CH2)3NH2 in a 1:1/6:1 molar ratio. This mixed organo-mineral compound crystallizes in the triclinic system, P¯, with the unit cell dimensions: a = 7.3678(3)~Å, b = 7.8018(5)Å, c = 11.1958(7)Å, = 76.914(4), = 81.052(4), = 85.46(1), V = 618.57(6)Å3 and Z = 1. The crystal structure of NiDAP consists of a complex anion, [Ni(HP2O7)2(H2O)2]4– and a diammoniumpropane cation. The complex anion is built up from two neutral water molecules (OW1) and two diphosphosphoric anions coordinated to Ni(II) in a bidentate chelating manner. (OW1) molecules link anionic complexes, [Ni(HP2O7)2(H2O)2]4– to create a thick bidimensional layers parallel to the (a, b) plane. These layers are interconnected in three dimensions through hydrogen bonds established between organic cations, the remaining water molecules OW2, OW3, and some external oxygen atoms of the anionic complex arrays. NiDAP was also characterized by IR spectroscopy, TG-DTA, and DSC analyses.  相似文献   

6.
Abstract  Treatment of [Re2(CO)8(MeCN)2] with excess 1-vinylimidazole in refluxing benzene gives three new compounds [Re2(CO)9{η 1-NC3H3N(CH=CH2)}] (1), [Re2(CO)8{η 1-NC3H3N(CH=CH2)}2] (2) and [ReCl2(CO)2{η 1-NC3H3N(CH=CH2)}2] (3) in 11, 32 and 2% yields, respectively. The solid-state structures of complexes 2 and 3 have been determined by single crystal X-ray diffraction studies. Compound 2 crystallizes in the monoclinic space group C2/c, with lattice parameters a = 13.8378(5) ?, b = 11.8909(5) ?, c = 14.4591(6) ?, β = 116.6470(10)°, Z = 4 and V = 2131.99(15) ?3. Compound 3 crystallizes in the monoclinic space group C2/c, with lattice parameters a = 10.1028(3) ?, b = 13.5640(5) ?, c = 12.5398(4) ?, β = 109.637(2)°, Z = 4 and V = 1618.4(9) ?3. The disubstituted dinuclear compound 2 contains two 1-vinylimidazole ligands coordinated through the imino nitrogen atoms at the equatorial sites, whereas the mononuclear compound 3 contains two carbonyl ligands, two N coordinated η 1-1-vinylimidazole ligands and two terminal Cl ligands. Graphical Abstract  Two dinuclear complesxes [Re2(CO)9{η 1-NC3H3N(CH=CH2)}] (1) and [Re2(CO)8{η 1-NC3H3N(CH=CH2)}2] (2) and the mononuclear [ReCl2(CO)2{η 1-NC3H3N(CH=CH2)}2] (3) were obtained from the reaction of [Re2(CO)8(MeCN)2] with excess 1-vinylimidazole at 80 °C. The X-ray structrures of 2 and 3 are described.   相似文献   

7.
Abstract  Treatment of Mn2(CO)10 with 2-thiazoline-2-thiol in the presence of Me3NO at room temperature afforded the dimanganese complexes [Mn2(CO)7(μ-NS2C3H4)2] (1) and [Mn2(CO)6(μ-NS2C3H4)2] (2) in 51 and 34% yields, respectively. Compound 1 was quantitatively converted into 2 when reacted with one equiv of Me3NO. Reaction of 1 with triphenylphosphine at room temperature furnished the mononuclear complex [Mn(CO)3(PPh3)(κ 2-NS2C3H4)] (3) in 66% yield. All three new complexes have been characterized by elemental analyzes and spectroscopic data together with single crystal X-ray diffraction studies for 1 and 3. Compound 1 crystallizes in the orthorhombic space group Pbca with a = 12.4147(2), b = 16.2416(3), c = 19.0841(4) ?, β = 90°, Z = 8 and V = 3848.01(12) ?3 and 3 crystallizes in the monoclinic space group P 21/n with a = 10.41730(10), b = 14.7710(2), c = 14.9209(2) ?, β = 91.1760(10)°, Z = 4 and V = 2295.45(5) ?3. Graphical Abstract  Two new dimanganese complexes [Mn2(CO)7(μ-NS2C3H4)2] (1) and [Mn2(CO)6(μ-NS2C3H4)2] (2) were formed when [Mn2(CO)10] was treated with 2-thiazoline-2-thiol in the presence of Me3NO. Compound 2 reacts with PPh3 to give the monomeric complex [Mn(CO)3(PPh3 )(κ 2-NS2C3H4)]. The structures of 1 and 3 were established by crystallography. Shishir Ghosh, Faruque Ahmed, Rafique Al-Mamun, Daniel T. Haworth, Sergey V. Lindeman, Tasneem A. Siddiquee, Dennis W. Bennett, Shariff E. Kabir Investigations of 2-thiazoline-2-thiol as a ligand: Synthesis and X-ray structures of [Mn2(CO)7(μ-NS2C3H4)2] and [Mn(CO)3 (PPh3)(κ 2-NS2C3H4)].   相似文献   

8.
The epr spectra of V4+ and radiation centres have been studied in β-eucryptite (LiAlSiO4), β-, γ-spodumene (LiAlSi2O6) and in glasses prepared by the fusion of the single crystals. It is shown that the electronic structures of the vitreous state in the Li2OAl2O3SiO2 system and that of the crystalline forms differ considerably. The change of the electronic structure on crystallization is not direct, but is realized through the intermediate state whose electronic structure differs from that of glasses and crystals.  相似文献   

9.
The K2Co(SO4)2 · 6H2O-K2Ni(SO4)2 · 6H2O system has been studied, and a series of K2Ni(SO4)2 · 6H2O/K2Co(SO4)2 · 6H2O bicrystals have been grown. The processes of defect formation at the substrate/layer interface K2Co(SO4)2 · 6H2O/K2Ni(SO4)2 · 6H2O are studied by probe microanalysis, X-ray topography, and optical microscopy. It is found that inclusions and threading dislocations are formed at the interface, due to which elastic stresses relax in the crystal. Nickel is nonuniformly distributed in the layer; its concentration decreases with an increase in the layer thickness, which is indicative of substrate dissolution in the initial stage of interaction. A way for the elastic mismatch stresses to relax in heterostructures of brittle crystals obtained from solutions at low temperatures is proposed which implies the formation of inclusions at the substrate/layer interface. Original Russian Text ? M.S. Grigor’eva, A.é. Voloshin, E.B. Rudneva, V.L. Manomenova, S.N. Khakhanov, V.Ya. Shklover, 2009, published in Kristallografiya, 2009, Vol. 54, No. 4, pp. 679–687.  相似文献   

10.
The new families of aluminate glasses obtained by the present authors from their melts in the systems K2O–Ta2O5–Al2O3, Na2O–K2O–Ta2O5–Al2O3, K2O –Cs2O– Ta2O5–Al2O3, K2O–Nb2O5–Al2O3, Na2Oz.sbnd;K2O–TiO2–Al2O3, BaO–TiO2–Al2O3, BaO–ZrO2–TiO2–Al2O3 and Na2O–K2O–BaO–ZrO2–Ta2O5–TiO2 –Al2O3 showed high transmissions of visible and infrared (IR) radiation ranging from 0.4 to about 6 μm, as well as high refractive indices up to 2.0. Their physical and chemical properties such as glass-forming ability, softening temperature, hardness and hygroscopicity were comparable to conventional silicate glasses. These properties are useful for IR applications. The cause of the high IR transmission of the aluminate glasses was interpreted in terms of the masses of the constituent cations and the single bond strengths of the cations with oxygen ions.  相似文献   

11.
Glass-forming regions of the systems Na2SSiO2 and Na2SB2O3 have been investigated in order to clarify whether Na2S could be substituted for Na2O in sodium silicate or borate glasses, and the results were interpreted in terms of the structures of silicate and borate glasses. No difference was found in the glass-forming range of SiO2 content between the Na2SSiO2 and Na2OSiO2 systems, and the red color of Na2SSiO2 glasses suggests that the formation of polysulfides in the glass structure is probably due to the entrance of sulfur ions in the non-bridging sites of the glass network. On the other hand, not all of the sulfur added to the glass batches could be retained in the Na2SB2O3 glasses and the amount remaining in the glass products changed depending upon the amount of sodium ions in the glasses. Only a trace of sulfur was observed in the glasses containing less than 13 mol% of Na2S in the batches, but the sulfur content in the glasses increased steeply with sodium content up to 35 mol%, reached the maximum and then decreased slowly with sodium content. The insolubility of sulfur in the glasses with low sodium content was interpreted based on the compositional dependence of basicity of alkali-borate glasses, and the change in solubility of sulfur with sodium concentration was explained based on the well-known boron anomaly caused by the change in the coordination state of boron and on the formation of non-bridging oxygens or sulfurs in the glass structure.  相似文献   

12.
Compounds K2[UO2(C3H2O4)2] · H2O (I) and Rb2[UO2(C3H2O4)2] · H2O (II) are synthesized and their crystal structures are determined by X-ray diffraction. The compounds crystallize in the monoclinic crystal system; for I, a = 7.1700(2) ?, b =12.3061(3) ?, c = 14.3080(4) ?, β = 95.831(2)°, space group P21/n, Z = 4, and R = 0.0275; for II, a = 7.1197(2) ?, b = 12.6433(4) ?, c = 14.6729(6) ?, β = 96.353(2)°, space group P21/n, Z = 4, and R = 0.0328. It is found that I and II are isostructural. The main structural units of the crystals are the [UO2(C3H2O4)2]2− chains, which belong to the AT 11 B 01 (A = UO22+, T 11, and B 01 = C3H2O42−) crystal chemical group of uranyl complexes. The chains and alkali metal ions R (R = K or Rb) are connected by electrostatic interactions and hydrogen bonds. Some specific structural features of [UO2(C3H2O4)2]2− complex groups are discussed.  相似文献   

13.
The ac conductivity of a member of the family of glasses 4.5 TiO2?x · 2 P2O5 has been measured between 77 and 300 K, and up to 100 kHz. The dc conductivity was measured over only part of this temperature range. The measured ac conductivity can be represented by σac = σ0 + σ1ωs, with s < 1, and temperature dependent. A similar equation describes the ac dielectric constant, ?ac = ?0 + ?1ωs?1, where ?1 = σ1tan12. A simple proportionality of s to temperature holds at low temperature; at the higher temperatures, the T-dependence of s is no longer simple. The observed behaviour of the ac properties of this glass is in general accordance with a recently proposed model for systems where transport occurs by hopping. The over-all behaviour is comparable to other transition metal glasses.Using the model and treating the carriers as polarons yields an expression for s in terms of temperature. Values for the polaron radius and the effective dielectric constant are then extracted from the measurements. These values are in good agreement with values for similar systems obtained by other means.  相似文献   

14.
The purpose of this paper is to study the glass formation tendency in the ternary system B2O3―Bi2O3―MoO3 and to define the main structural units building the amorphous network. A wide glass formation area was determined which is situated near the Bi2O3―B2O3 side. A liquid phase separation region was observed near the MoO3―B2O3 side for compositions containing below 25 mol% Bi2O3 and their microheterogeneous structure was observed by SEM. The phase formation was characterized by X-ray diffraction (XRD). By DTA was established the glass transition temperature (Tg) in the range of 380-420 °C and crystallization temperature (Tx) vary between 420 and 540 °C. The main building units forming the amorphous network are BO3 (1270 and 1200 cm− 1), BO4 (930-880, 1050-1040 cm− 1), MoO4 (840-760 cm− 1) and BiO6 (470 cm− 1). It was proved that Bi2O3 favors the BO3 → BO4 transformations while MoO3 preserves BO3 units in the amorphous network.  相似文献   

15.
Single crystals of the compounds (C3N6 H7)4(CN3H6)2[UO2(CrO4)4] · 4H2O (I) and (H3O)6[UO2(CrO4)4] (II) are synthesized, and their structures are investigated using X-ray diffraction. Compound I crystallizes in the triclinic system with the unit cell parameters a = 6.3951(8) ?, b = 10.8187(16) ?, c = 16.9709(18) ?, α = 93.674(4)°, β = 97.127(4)°, γ = 92.020(4)°, space group, P Z = 1, V = 1161.6(3) ?3, and R = 0.0470. Crystals of compound II belong to the monoclinic system with the unit cell parameters a = 14.3158(4) ?, b = 11.7477(3) ?, c = 13.1351(4) ?, β= 105.836(1)°, space group C2/c, Z = 4, V = 2125.2(1) ?3, and R = 0.0213. The uranium-containing structural units of crystals I and II are mononuclear anionic complexes of the composition [UO2(CrO4)4]6− with an island structure, which belong to the crystal-chemical group Am 14 (A = UO2+2, M 1 = CrO2−4) of the uranyl complexes. The [UO2(CrO4)4]6− anionic complexes are joined into a three-dimensional framework through the electrostatic interactions with outer-sphere cations and a system of hydrogen bonds. Original Russian Text ? L.B. Serezhkina, E.V. Peresypkina, A.V. Virovets, A.G. Verevkin, D.V. Pushkin, 2009, published in Kristallografiya, 2009, Vol. 54, No. 2, pp. 284–290.  相似文献   

16.

Abstract  

The synthesis and crystal structure of the dinuclear manganese (II) compound [Mn2(bpy)4(2-ClC6H4COO)2](ClO4)2·2EtOH is described. The complex crystallizes in the monoclinic system, space group P21/n with a = 12.2067(18), b = 17.335(3), c = 13.706(3) ? and β = 92.606(8)°. In this structure, two manganese ions are bridged by two 2-chlorobenzoate ligands in a synanti mode. The hexa-coordination of each manganese is completed by two 2,2′-bipyridine ligands. Two perchlorate anions and two molecules of ethanol complete the packing. In order to check the magnetic properties previously reported from a powder sample, new magnetic studies have been carried out from a crystal sample, obtaining J = −1.79 cm−1 and g = 2.00 (H = −JS 1 ·S 2 ).  相似文献   

17.
The crystallization and phase-separation phenomena in the Li2OSiO2 glass are studied by positron lifetime and annihilation lineshape measurements. Analysis of the kinetic data shows three-dimensional morphology of growing crystals. Phase-separation is seen to increase the density of crystal nuclei and the rate of volume crystallization, but it does not affect the morphology. In addition, surface crystallization is detected in glasses with small degrees of phase-separation. The results are consistent with scanning electron and optical micrographs.  相似文献   

18.
The first results obtained by small-angle neutron scattering (SANS) study of sub-liquidus immiscibility of glasses are presented. Measurements were performed on the neutron small-angle scattering spectrometer of the Institut Laue-Langevin (Grenoble, France). The glass studied was 0.88 (SiO2), 0.12 (Na2O) from SiO2Na2O system which presents a well-known miscibility gap already explored by small-angle X-ray scattering (SAXS) method. Absolute values of the neutron scattering cross section as a function of scattering vector were obtained for this glass quenched and heat treated at 560°C for various lengths of time. It is shown that the ANS method can be used to follow phase separation kinetics and the comparison with SAXS results can in principle be used to separate the effects of density and concentration fluctuations in this system.  相似文献   

19.
用电沉积法制备了Ti/SnO2 +Sb2Ox/PbO2耐酸阳极,采用交流阻抗法测定了电极的导电性,利用加速寿命实验测定了电极的加速使用寿命,同时引入循环伏安新方法定量考察不同Sb掺杂物质的量分数对电极表面分形维数的影响,并且讨论了电极在酸性溶液中的析氧电催化性能。结果表明,Sb掺杂物质的量分数在0.02和0.10时Ti/SnO2 +Sb2Ox/PbO2电极的分形维数较高,表明电极表面粗糙程度较大,析氧电催化性能较好,是优良的高析氧电位下的阳极材料,适用于阳极氧化获得产品的电极过程。Sb掺杂物质的量分数为0.06时Ti/SnO2 +Sb2Ox/PbO2电极的导电性最好,加速使用寿命达到89 h。因此,Ti/SnO2 +Sb2Ox/PbO2电极是酸性溶液中较好的阳极材料。  相似文献   

20.
Y.H. Yun  P.J. Bray 《Journal of Non》1978,27(3):363-380
The 11B NMR spectra have been used to study the structure of glasses in the system Na2OB2O3SiO2. The fraction of BO4 units, and the fraction of BO3 units with one or two nonbridging oxygens, are measured and analyzed according to a structural model. The results indicate that: (1) for a sodium oxide to boron oxide ratio of 0.5 or less, the Na+1 ions are attracted primarily by the borate network; therefore, the ternary glasses can be viewed as binary sodium borate glasses diluted by SiO2; (2) when the sodium oxide to boron oxide ratio exceeds 0.5, the additional Na2O results in the formation of [BSi4O10]?1 units at the expense of diborate and SiO4 units. In this process, Na+1 ions are still taken up only by the borate network. After all the available SiO4 units are consumed to form [BSi4O10]?1 units, additional Na+1 ions are proportionally shared between the borate and silicate networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号