首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pure rotational transitions in the ground vibrational state have been measured for H212C18O, H212C17O, H213C18O, and H213C17O in the frequency region 8–75 GHz. These have included both Q- and R-branch transitions, and have permitted accurate evaluation of rotational constants and several quartic centrifugal distortion constants for each species. These in turn have permitted the prediction of several transitions of possible use in radioastronomy.  相似文献   

2.
The pure rotational spectra of H212C17O and H213C17O have been investigated in the frequency region between 8 and 360 GHz in the ground vibrational state. For both isotopic species the 17O nuclear quadrupole coupling constants and spin-rotation constants have been obtained. From both Q- and R-branch transitions a set of rotational constants and several distortion constants could be derived employing Watson's formalism in A reduction. The obtained rotational constants are in Megahertz:
  相似文献   

3.
The rotational spectra of formaldehyde, H212C16O and its isotopic species H213C16O, H212C18O, and H213C18O have been investigated in the ground vibrational state in the frequency region between 8 and 460 GHz. For most cases in which measurements of the a-type R- and Q-branch transitions already existed the accuracy of the line position has been improved to about 10 kHz. For H212C16O and H213C16O a large number of ΔKa = ±2 transitions were measured with similar accuracy. These new data when combined with all other available data and appropriate weightings lead to a set of ground state parameters which for the first time are compatible with infrared and ultraviolet data. The rotational constants (and 3σ standard deviations) obtained using Watson's A-reduced Hamiltonian are:
  相似文献   

4.
The infrared spectrum of CO2 in the region 540–830 cm?1 has been studied with a Fourier spectrometer at a resolution of 0.010 cm?1. In addition to the fundamental ν2, more than 10 “hot” band transitions of 12C16O2 have been identified. The rotational constants involved have been derived. Special care has been taken in obtaining accurate constants for the level 0110. The ν2 fundamentals of the isotopic molecules 13C16O2, 16O12C18O, and 16O12C17O have also been observed in a natural sample.  相似文献   

5.
Centrifugal distortion analyses based entirely on high-quality infrared data are carried out for the ground vibrational states of H216O, H217O, and H218O. As a result of the analyses, the values of 27 rotation and distortion constants for each species are determined. By using these constants it was possible to improve considerably the accuracy of the literature values for rotational energy levels at high Jτ, especially for H217O and H218O. The experimental values for the energy levels are deduced from the observed rotational transitions constituting the fitted data.  相似文献   

6.
The overlapping structure observed in the region of the ν3 fundamental of 13C16O2 at 4.4 μm has been assigned to several transitions belonging to not only the 13-C variety of carbon dioxide (13C16O2) but also to 13C16O17O and 13C16O18O species occurring in the sample. Molecular constants have been evaluated for the assigned transitions.  相似文献   

7.
The rotational spectra of formaldehyde, H212C16O and its isotopic species H213C16O, H212C18O, and H213C18O have been investigated in the ground vibrational state in the frequency region between 8 and 460 GHz. For most cases in which measurements of the a-type R- and Q-branch transitions already existed the accuracy of the line position has been improved to about 10 kHz. For H212C16O and H213C16O a large number of ΔKa = ±2 transitions were measured with similar accuracy. These new data when combined with all other available data and appropriate weightings lead to a set of ground state parameters which for the first time are compatible with infrared and ultraviolet data. The rotational constants (and 3σ standard deviations) obtained using Watson's A-reduced Hamiltonian are:
H212C17OH213C17O
A281 965.0 (30)281 987.3 (19)
B37 812.287(45)36 776.790(25)
C33 214.523(31)32 412.920(19)
  相似文献   

8.
In the far infrared spectrum of water, 121 H218O and 48 H217O pure rotational lines have been identified. From the line frequencies and a minimum number of literature values of near infrared rotation-vibration transitions and lines from microwave spectra, the ground-state energy levels have been calculated up to J = 12 and 11, respectively. For low J levels, the agreement with earlier calculations from other microwave lines and near infrared results is within the experimental error, but deviations up to 0.6 cm?1 are found for high J, high Ka levels.  相似文献   

9.
The vibration-rotation spectra of the ν2 fundamental of 12C17O2 and 12C17O18O have been obtained by Fourier transform spectroscopy at 0.05 cm?1 resolution. The data were fitted by a least-squares routine to obtain a number of the molecular constants. The band center for 12C17O2 lies at 662.0716 cm?1 while that for 12C17O18O is at 659.7057 cm?1. The difference bands ν1 - ν2 have also been observed for the two molecular species.  相似文献   

10.
A set of mass-independent Umj and Δmj parameters globally describing vibration–rotation energy levels of the CO molecule in the X1Σ+ ground electronic state was fitted to more than 19,000 transitions of 12C16O, 13C16O, 14C16O, 12C17O, 13C17O, 12C18O, and 13C18O isotopologues collected from the literature. The maximal values of the vibrational V and the rotational J quantum numbers included in the fit was 41 and 128, respectively. The weighted standard deviation of the fit is .66. Fitted parameters were used for calculation of Dunham coefficients Ymj for nine isotopologues 12C16O, 13C16O, 14C16O, 12C17O, 13C17O, 14C17O, 12C18O, 13C18O, and 14C18O. Calculated transition frequencies based on the fitted parameters were compared with previously reported. A critical analysis of the CO HITRAN and HITEMP data is also presented.  相似文献   

11.
Infrared absorption spectra of 13C16O2, 13C18O2, 16O13C17O, 16O13C18O, and 16O12C18O have been measured in the wavenumber region 570–780 cm?1 with a spectral resolution of about 0.005 cm?1. The data were recorded at room temperature with a Fourier transform spectrometer using a 13C-enriched sample of carbon dioxide. The fundamentals ν2 and several “hot” bands have been identified and effective molecular constants have been derived.  相似文献   

12.
In the investigation of the 8 → 280 GHz region, 241 and 57 transitions of H12COOH and DCOOH, respectively, have been assigned to the ν7 and ν9 vibrational states coupled by a strong Coriolis resonance. The numerical analysis based on Watson's theory of centrifugal distortion coupled with the addition of Coriolis interaction allows us to obtain a set of parameters which fits the transitions well. The rotational spectra of the isotopic species HCOOD and DCOOD have also been investigated. In this investigation 55 and 67 transitions have been assigned to the ν7 and ν9 vibrational states of these two molecules, respectively. A very weak Coriolis resonance was detected. Two non-rigid independent rotors were thus employed and gave us a set of parameters which fits the transitions quite well. The rotational spectrum of the ground state of H12COOH, H13COOH, HCOOD, DCOOH, H12C16O18OH, and H12C18O16OH have been reinvestigated and a set of improved parameters was obtained for each species.  相似文献   

13.
The rotational spectra of cyanophosphine, H2PCN, have been measured between 10 and 42.5 GHz by Fourier transform microwave spectroscopy. The rotational constants, centrifugal distortion constants, the 14N quadrupole coupling constant, and the nuclear spin-rotation coupling constants of 31P have been determined. Density functional ab initio calculations were performed, and the calculated values of the molecular constants are in excellent agreement with our experimentally determined results. The spectra of three isotopomers were measured, H2P12C14N, H2P13C14N, and H2P12C15N. The derived r0 structure is quite comparable to the ab initio predicted H2PCN equilibrium geometry.  相似文献   

14.
Line positions and strengths of 16O12C18O (628), 18O12C18O (828) and 17O12C18O (728) were measured between 2200 and 7000 cm−1 using 22 near infrared (NIR) absorption spectra recorded at 0.01-0.013 cm−1 resolution with the McMath-Pierce Fourier transform spectrometer located at the National Solar Observatory on Kitt Peak, Arizona. These data were obtained at room temperature using absorption cells with optical path lengths ranging from 2.4 to 385 m; the cells were filled with natural and 18O-enriched samples of CO2 at pressures ranging from 0.54 to 252 torr. The observed line positions were analyzed to obtain the upper state band centers and rotational constants for 17 bands of 16O12C18O, 19 bands of 18O12C18O and 8 bands of 17O12C18O. The majority of the 18O12C18O and 17O12C18O bands were measured for the first time. In addition, the rotational constants for the lower states 00001, 01101e and 01101f were derived for all three species using the method of combination differences in which the averaged values obtained from the line positions of two or more bands were least-squares-fitted. Rovibrational parameters were also obtained for the 02201e, 02201f, 10002 and 10001 states of 18O12C18O. The line position analysis revealed that transitions of the levels 38 ? J′ ? 46 of the 11111f ← 01101f band of 18O12C18O are perturbed. Perturbed transitions were also observed for the 12212 ← 02201 band and in the high-J transitions (J′ ? 49) of the 20012 ← 00001 band of 18O12C18O. Band strengths and Herman-Wallis-like F-factor coefficients were determined for 21 bands of 16O12C18O, 25 bands of 18O12C18O and 8 bands of 17O12C18O from least-squares fits to more than 3700 measured transition intensities; band strengths and line positions for 34 of these bands were obtained for the first time.  相似文献   

15.
The absorption spectrum of the ν2 band of T2O vapor has been observed at 0.04 cm?1 resolution. A total of 549 transitions has been assigned; 474 of these have been used to evaluate the rotational constants A, B, and C as well as the fourth-order and sixth-order distortion constants and one eighth-order constant for the upper vibrational state.  相似文献   

16.
This paper reports the assignment of the rotational spectra of the m = 0 and 1 states of 13CC5H6-H2O and C6H5D-H2O dimers. The m = 1 progression was not identified or assigned for both 13CC5H6-H2O and C6H5D-H2O in the earlier work, though for the symmetric isotopomers (C6H6-H2O/D2O/H218O), they were identified [H.S. Gutowsky, T. Emilsson, E. Arunan, J. Chem. Phys. 99 (1993) 4883]. The m = 1 transitions for 13CC5H6-H2O and C6H5D-H2O were split into two, unlike that of the parent C6H6-H2O isotopomer. The splitting varied, somewhat randomly, with quantum numbers J and K. The m = 0 lines of 13CC5H6-H2O had significant overlap with the m = 1 lines of the parent isotopomer, clouding proper assignment, and leading to an rms deviation of about 200 kHz in the earlier work. The general semi-rigid molecular Hamiltonian coupled to an internal rotor, described recently by Duan et al. [Y.B. Duan, H.M. Zhang, K. Takagi, J. Chem. Phys. 104 (1996) 3914], is used in this work to assign both m = 0 and 1 states of 13CC5H6-H2O and C6H5D-H2O dimers. Consequently, the m = 0 fits for 13CC5H6-H2O/D2O have an rms deviation of only 4/7 kHz, comparable to experimental uncertainties. The fits for m = 1 transitions for 13CC5H6-H2O and C6H5D-H2O dimers have an rms deviation of about 200 kHz. However, it is of the same order of magnitude as that of the m = 1 state of the parent C6H6-H2O dimer. The A rotational constants determined from the m = 0 fits for both 13CC5H6-H2O and 13CC5H6-D2O isotopomers are identical and very close to the C rotational constant for 13CC5H6. This provides a direct experimental determination for the C rotational constant of 13CC5H6, which has a negligible dipole moment.  相似文献   

17.
An extensive work on vibration-rotation spectra in the fundamental 1Σ+ electronic state of CO is reported. More than 30 000 Doppler-limited measurements corresponding to about 8500 transitions of 255 bands of 12C16O, 12C18O, 13C16O, and 13C18O, most of them observed for the first time, have been obtained with a high information Fourier transform interferometer on the sequences Δv = 1, 2, and 3. The highest v and J values are 41 and 93, respectively. Experimental vibrational levels are then well observed up to three fourths of the dissociation energy limit. These accurate infrared wavenumbers, with an additional selected set of all previous measurements, have been simultaneously fitted to the Dunham expression in a weighted nonlinear least-squares calculation covering seven different isotopic species. It significantly improves both the number of parameters (U and Δ) obtained by the best previous work (35 instead of 23) and their corresponding standard deviations. The rms of the fit is equal to 13 × 10?6 cm?1 (390 KHz). Calculated wavenumbers from the 35 reduced Dunham and mass-scaling coefficients can then be used as secondary standards, even for transitions involving high v and J values of the various isotopic species. These new parameters should be a convenient and useful tool for several purposes, such as assignment of infrared laser lines and identification of microwave and infrared transitions in astronomical spectra. The Dunham coefficients Y are also reported for 12C16O, 12C17O, 12C18O, 13C16O, 13C17O, 13C18O, and 14C16O. These experimentally determined accurate Y should also be useful for further examination of the potential energy and dipole moment formulations.  相似文献   

18.
A pair of 1.5 μm semiconductor laser frequency standards have been developed for optical telecommunications use, stabilised to transitions of 12C2H2 and 13C2H2, using cavity-enhanced Doppler-free saturation absorption spectroscopy. The absolute frequencies of 41 lines of the ν1 + ν3 band of 12C2H2, covering the spectral region 1520-1545 nm, have been measured by use of a passive optical frequency comb generator, referenced to 13C2H2 transitions of known frequency. The mean experimental uncertainties (coverage factor k = 1) of the frequency values are 3.0 kHz (type A) and 10 kHz (type B). Improved values of the band origin ν0, rotational constants B′ and B″, and centrifugal distortion coefficients D′, D″, H′, and H″ are presented.  相似文献   

19.
The combination of a new high-resolution grating spectrometer and a spontaneous emission source has made it possible to measure precisely the 1 → 0, 2 → 1, and 2 → 0 transitions of 12C16O relative to the accurately known 12C16O laser lines which have been referred to pure frequency standards by Eng et al. The 1 → 0 and 2 → 0 band centers agree to within 0.0002 cm?1 with those measured relative to wavelength standards by Fourier transform spectroscopy (FTS). From a weighted simultaneous fit to the FTS-absorption, FTS-flame, our grating-emission, and microwave results, a set of calculated line positions was obtained for the 1 → 0, 2 → 1, and 2 → 0 transitions of 12C16O. The absolute accuracy of these line positions is believed to be ±0.0005 cm?1 and we propose that the lines can be used as secondary wavenumber standards in the infrared.The spontaneous emission sequences v′ → (v′ ? 1) were measured for 12C16O up to v′ = 20, for 13C16O up to v′ = 11 (using a 13C-enriched sample), and for 12C18O up to v′ = 4 (in natural abundance). Internally consistent sets of Dunham coefficients were calculated from the best available data for the molecules of 12C16O, 13C16O, and 12C18O.  相似文献   

20.
The ν3 fundamental band of H2CO (CH2 scissoring motion) has been studied by means of CO laser Stark spectroscopy and conventional infrared absorption spectroscopy. The primary aim of the work was to determine the dipole moment of H2CO in the v3 = 1 state, and the value determined was 2.3250 ± 0.0025 D. The spectrum was analyzed with the inclusion of the Coriolis interactions among ν3, ν4, and ν6 so that “true” rotational constants were determined for ν3; “effective” constants obtained by ignoring these interactions were also determined. The ν3 band origin was determined to be 1500.174 ± 0.002 cm?1. The H2CO spectrum was also used as a means of determining the frequencies of some 13C16O and 12C18O laser lines in the 1500 cm?1 region relative to 12C16O lines.  相似文献   

H212C16OH213C16OH212C18OH213C18O
A/MHz281 970.572 (24)281 993.258(135)281 961.94 (39)281 985.00 (93)
B/MHz38 836.0456(13)37 811.0887(25)36 904.1693(66)35 859.256(10)
C/MHz34 002.2034(12)33 213.9790(25)32 511.5311(63)31 697.868(10)
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号