首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rz structure of phosgene has been determined by a joint analysis of the electron diffraction intensity and the rotational constants as follows: rz(CO) = 1.1785 ± 0.0026 A?, rz(CCl) = 1.7424 ± 0.0013 A?, ∠z;ClCCl = 111.83 ± 0.11°, where uncertainties represent estimated limits of experimental error. The effective constants representing bond-stretching anharmonicity have been obtained from an analysis of the isotopic differences in the rz structure: a3(CO) = 2.9 ± 0.9 A??1, a3(CCl) = 1.6 ± 0.4 A??1. The equilibrium bond distances have been estimated from the rz structure for the normal species and from the anharmonic constants to be re(CO) = 1.1756 ± 0.0032 A?, re(CCl) = 1.7381 ± 0.0019 A?.  相似文献   

2.
The pure rotational spectra of three deuterated ethylenes, CH2CD2, CH2CHD, and cis-CHDCHD, were observed by microwave spectroscopy, and the rotational and centrifugal distortion constants were determined precisely. The dipole moment of CH2CD2 was calculated from the Stark effects to be 0.0091 ± 0.0004 D. From the observed rotational constants the average structure was calculated to be rz(CC) = 1.3391 ± 0.0013 A?, rz(CH) = 1.0869 ± 0.0013 A?, θz(CCH) = 121.28 ± 0.10°, and rz(CH) - rz(CD) = 0.00137 ± 0.00037 A?, where the errors include one standard deviation in the fitting and errors due to an uncertainty (±0.03°) in θz(CCH) - θz(CCD).  相似文献   

3.
The microwave spectra of four isotopic species of dichlorine monoxide (OCl2) have been observed, and the rotational constants have been obtained. The rm structure for each isotopic species has been determined by Watson's method. The equilibrium structure has been estimated by taking proper averages of rm structures to be re(OCl) = 1.69587(7) A? and ∠eClOCl = 110.886(6)°. The general applicability and the merit of the present method for estimating the equilibrium structure are pointed out.  相似文献   

4.
The microwave spectrum of the unstable thiocarbonyl thioketen, H2CCS, has been investigated in the region 26.5–40 GHz. All singly substituted species as well as D2CCS have been studied and the derived rotational constants yield the following structural parameters: rs(CS) = 1.554 ± 0.003 A?, rs(CC) = 1.314 ± 0.003 A?, rs(CH) = 1.090 ± 0.006 A?, ∠s(HCH) = 120.3 ± 0.5°. The dipole moment is μ = 1.02 ± 0.01 D. Four low frequency vibrational modes have been observed and their assignments are discussed.  相似文献   

5.
The rotational structure of about 40 bands of 12C2HD observed in the region 6000?600 cm?1 has been measured and interpreted with the purpose of determining a comprehensive set of molecular constants for this isotopic variety of acetylene. Combining these data with the results for 12C2H2 and 12C2D2, a reevaluation of the equilibrium internuclear distances for the acetylene molecule has been made: re(CH) = 1.06215 ± 17 × 10?5A? and re(CC) = 1.20257 ± 9 × 10?5A? were obtained. This paper presents all the molecular constants derived in this study.  相似文献   

6.
Cyanobutadiyne (cyanodiacetylene), HCCCCCN, is sufficiently stable at low pressures to permit its rotational spectrum to be studied by microwave spectroscopy. The spectrum consists of a series of R-branch transitions typical of a linear molecule. The transitions with J = 9 to 14 which lie between 26.5 and 40.0 GHz have been measured for the vibrational ground state. Transitions have also been detected in natural abundance for all possible singly substituted 13C and 15N isotopic species. Deuteriated cyanobutadiyne, DCCCCCN, has also been synthesized and its ground state spectrum recorded. These measurements have enabled a complete substitution structure to be derived for the first time for a polyacetylene: r8(HCa) = 1.0569 ± 0.001, r8(CaCb) = 1.2087 ± 0.001, r8(CbCc) = 1.3623 ± 0.003, r8(CcCd) = 1.2223 ± 0.004, r8(CdCe) = 1.3636 ± 0.003, r8(CeN) = 1.1606 ± 0.001 A? (10?10m). The spectroscopic parameters for the ground state are B0 = 1331.3313 ± 0.001 MHz and D0 = 0.0257 ± 0.002 KHz. The dipole moment, determined from the Stark effects of the J = 9 and 10 lines, is 4.33 ± 0.03 Debye.  相似文献   

7.
The J = 2?1 microwave spectrum of six isotopic species of HSiF3 has been observed and assigned in excited states of five of the six fundamental vibrations. The assignment is based on relative intensities, double resonance experiments, and trial anharmonic force constant calculations. Analysis of the spectra leads to experimental values for five of the αrB constants, all three l-doubling constants qt, one Fermi resonance constant φ233, and one zeta constant ζ6, 6(z).The harmonic force field has been refined to all the available data on vibration wavenumbers, centrifugal distortion constants, and zeta constants. The cubic anharmonic force field has been refined to the data on αrB and qt constants, using two models: a valence force model with two cubic force constants for SiH and SiF stretching, and a more sophisticated model. With the help of these calculations, the following equilibrium structure has been determined: re(SiH) = 1.4468(±5) A?, re(SiF) = 1.5624(±1) A?, ∠HSiF = 110.64(±3)°,  相似文献   

8.
Microwave spectra of SF2 in the first excited states of the three normal modes were observed and analyzed. A comparison of the observed inertia defects in the ν1 and ν3 states with those calculated by omitting the contributions of the Coriolis interaction between the two modes led to a ν?1 - ν?3 vibrational frequency differences of 25.72 ± 0.33 cm?1, with ν1 being definitely higher. The inertia defect in the ground state and our measured values for the inertia defect in the ν2 state and for the ν?1 - ν?3 difference were combined with the centrifugal distortion constants of Kirchhoff et al. [J. Mol. Spectrosc.48, 157–164 (1973)] to improve the harmonic force field. The interaction constant between the two SF stretching coordinates was determined precisely. The third-order and the cubic anharmonic potential constants were calculated from the observed vibration-rotation constants. The equilibrium structure was determined to be re(SF) = 1.58745 ± 0.00012 A? and θe(FSF) = 98.048 ± 0.013°.  相似文献   

9.
Fluorohydroxy borane, BF(OH)2, has been identified in the hydrolysis of trifluoroborane by microwave spectroscopy. The rotational and centrifugal distortion constants have been determined for the normal and d2 species. From these constants the molecular structure has been determined. This molecule does not have C2 symmetry and the structural parameters are r(BO1) = 1.360 A?, r(BO2) = 1.365 A?, ∠FBO1 = 118.2°, and ∠FBO2 = 121.0°. The inertia defects establish the planarity of the molecule. The dipole moment of 1.818 ± 0.007 D has been obtained from the measurements of the Stark effects.  相似文献   

10.
A method based on the least-squares fitting of the observed vibrational frequencies, centrifugal distortion constants, mean-square amplitudes, and vibration-rotation interaction constants with respect to the harmonic force constants has been employed to determine the harmonic force field of NCl3 and PCl3. The results are compared with those obtained by other authors. An improved structure of PCl3 has also been determined by analysis of the microwave spectrum of the P37Cl3 and P35Cl237Cl isotopic species. Two structures have been obtained with the following values of the parameters
rs(PCl)=2.0450±0.0072 A? ClPCl=100°12′±20′
rs(PCl)=2.0426±0.0005 A? ClPCl=100°6′±1′
  相似文献   

11.
Vibration-rotation transitions of the fundamental band have been observed for both C35Cl and C37Cl in the 2Π12 and 2Π32 states by using an infrared diode laser spectrometer with Zeeman modulation. A few lines of the “hot” band (v = 2 ← 1) have also been recorded for C35Cl. From an analysis of the observed spectra improved values were obtained for the vibrational harmonic frequency and anharmonicity constant, rotational constants, and Λ-doubling parameters. It was found necessary to take into account centrifugal distortion effects on the spin-orbit coupling constant A in the analysis, which gave (dAdr)ere to be ?176 ± 38 or ?125 ± 38 cm?1, depending upon whether 2Σ? or 2Σ+ states contribute more to the Λ-type doubling. The equilibrium internuclear distance re was calculated from the derived rotational constants to be 1.64506 ± 0.00016 Å.  相似文献   

12.
The J = 4 ← 3 and J = 3 ← 2 rotational transitions of 1-phosphapropyne, CH3CP, between 26.5 and 40 GHz have been studied by microwave spectroscopy. The spectrum shows the characteristic vibration-rotation satellite patterns associated with a C3v symmetric rotor. Apart from the most abundant isotope variant, the species 12CD312C31P, 12CD2H12C31P, 12CH2D12C31P, 13CH312C31P, 12CH313C31P, 13CD312C31P, and 12CD313C31P have also been studied. For 12CH312C31P the rotational constants B0 = 4991.339 ± 0.003 MHz, DJ = 0.823 ± 0.092 kHz, DJK = 66.59 ± 0.18 kHz have been determined. From these data the following structural parameters have been derived: rs(CH) = 1.107 ± 0.001 A?, ∠s(HCC) = 110.30 ± 0.09°, rs(CC) = 1.465 ± 0.003 A?, r0(CP) = 1.544 ± 0.004 A?. The dipole moment has been determined as 1.499 ± 0.001 D by analysis of the Stark effect of the J = 3 ← 2, |K| = 1 line. The vibrational satellites (vs = 1, 2, and 3) have been studied and various vibration-rotation parameters derived.  相似文献   

13.
An extensive study of the microwave spectrum of cyanamide has been undertaken, the analysis being based in part on semirigidbender calculations by the methods of Bunker and Szalay. Inversion lines of NH2CN, K?1 = 2 aQ branches and a number of vibrational satellites of the J = 2?1 transition were observed. A two-vibrational-state Hamiltonian was used to fit simultaneously the 0+ and 0? microwave data and yielded rotational constants X, Y, Z, DJ, DJK, d1, HJK as well as the inversion splitting and the μyz-connecting matrix element. Vibrational satellite data of seven isotopic species and infrared frequencies of NH2CN were included in the semirigid bender calculations: The NCN spine is nonlinear by ca. 5° in the equilibrium structure of the molecule. Also, rNHA? = 0.9994 + 0.0144?2; <HNH/2 = 60.39° ? 0.1134?2; rNCA? = 1.3301 + 0.0327?2 (? is the inversion angle in rad); rCN = 1.1645 A? fixed. The inclusion of the NC bond flexing was necessary in order to reproduce the observed vibrational satellite patterns of NH2CN, NHDCN, and ND2CN. The barrier to inversion of the amino group is 510 ± 6 cm?1 with minima at ±45.0 ±0.2°. The inversion dipole moment is 0.91 ± 0.02 Debye.  相似文献   

14.
A millimeter-wave spectrometer having a sensitivity of 4 × 10?10 cm?1 in the 2-mm region has been constructed for observation of extremely weak millimeter-wave spectra of gases. It has been used to measure JJ, K = 0 ← 3 transitions in PH3 and JJ, K = 0 ← 3 as well as K = ±1 ← ±4 transitions in PD3. The B0 and C0 spectral constants (in MHz) are: for PH3, B0 = 133 480.15 ± 0.12 and C0 = 117 488.85 ± 0.16; for PD3, B0 = 69 471.10 ± 0.03 and C0 = 58 974.37 ± 0.05. The effective ground-state values obtained for the bond angle and bond length are: for PH3, r0 (A?) = 1.4200 and α0(o) = 93.345; for PD3, r0 (A?) = 1.4176 and α0(o) = 93.359. The corresponding zero-point-average values were calculated to be: for PH3, rz (A?) = 1.42699 ± 0.0002 and αz(o) = 93.2287; for PD3, rz (A?) = 1.42265 ± 0.0001 and αz(o) = 93.2567 ± 0.004. For both species, the equilibrium values are re (A?) = 1.41159 ± 0.0006 and αe(o) = 93.328 ± 0.02.  相似文献   

15.
The microwave spectrum of oxiranecarboxaldehyde (glycidaldehyde) has been studied in the 8–40 GHz region. Transitions in the ground and first seven excited states of the torsional motion of the aldehyde group have been assigned for the species with the oxygen atom of the aldehyde group trans to the oxirane ring. The v = 0 to v = 1 torsional excitation energy is estimated to be 140 ± 10 cm?1. The population of any other torsional conformer is less than 5% of the trans species at 200 K. Structural parameters were derived from rotational constants of the three singly substituted 13C species, whose spectra were observed in natural abundance. Substitution parameters are rCC(ring) = 1.453 ±0.025 A?, rCC(ald.) = 1.469 ± 0.010 A?, ∠CCC = 119.8 ± 2.0°. The dipole moments determined by means of the Stark effect are μa = 1.932 ± 0.005 D, μb = 1.511 ± 0.017 D, and μc = 0.277 ± 0.156 D, with μt = 2.469 ± 0.031 D.  相似文献   

16.
The microwave and photoelectron spectra of isocyanato ethene CH2CHNCO have been studied. The microwave results indicate that the species is planar and possesses both a cis and a trans form. The appearance of dense and complicated vibrational satellite lines indicates that the molecule is quite flexible, a general property of molecules containing the isocyanate group. The rotational constants are:
cis: A0 = 20 146.8, B0 = 3107.267, C0 = 2689.513 MHz; trans: A0 = 62 584.051, B0 = 2437.730, C0 = 2346.507 MHz
These constants are shown to be consistent with structures in which r(CN) = 1.382 ± 0.005 A?, ∠(CCN) = 122 ± 1° (for both conformers), and ∠(CNC) = 142.4 ± 0.5° (cis) and 138.4 ± 1.5° (trans). The dipole moments are μ(cis) = 2.120 ± 0.015 and μ(trans) = 2.207 ± 0.007 D. Several distinct peaks are observed in the photoelectron spectrum; however, the structure is not resolved into features belonging to the different isomers. The first ionization potential lies at 9.80 ± 0.1 eV. The spectrum has been assigned with the aid of theoretical calculations.  相似文献   

17.
The microwave spectrum of boron chloride difluoride, BClF2, has been investigated in the region 26.5–40.0 GHz. R-branch transitions belonging to the isotopic species 11B35Cl19F2, 11B37Cl19F2, and 10B35Cl19F2 have been observed and the derived rotational constants yield the following ground-state structural parameters: r0(BF) = 1.315 ± 0.006 A?, rs(BCl) = 1.728 ± 0.009 A?, < FBF = 118.1 ± 0.5°. The ground-state rotational constants of the most abundant species 11B35Cl19F2 are: A0 = 10 449.32 ± 0.13, B0 = 4705.811 ± 0.020, C0 = 3239.702 ± 0.026 MHz, ΔJK = 8.9 ± 1.7, and ΔJ = 1.86 ± 0.48 KHz. The asymmetry parameter κ = ?0.593291 and the inertial defect δ0 = 0.2361 amu Å2 which is consistent with that expected for this type of molecule if planar. The 35Cl quadrupole coupling constants for 11B35Cl19F2 are χaa = ?42.8 ± 1.0, χbb = 30.2 ± 1.5, χcc = 12.6 ± 1.5 MHz with the asymmetry parameter η = 0.41.  相似文献   

18.
A rotational assignment of approximately 80 lines with Ka′ = 0, 1, 2, 3, and 4 has been made of the 593 nm 2A12B2 band of NO2 using cw dye laser excitation and microwave optical double-resonance spectroscopy. Rotational constants for the 2B2 state were obtained as A = 8.52 cm?1, B = 0.458 cm?1, and C = 0.388 cm?1. Spin splittings for the Ka′ = 0 excited state levels fit a simple symmetric top formula and give (?bb + ?cc)2 = ?0.0483 cm?1. Spin splittings for Ka′ = 1 (N′ even) are irregular and are shown to change sign between N′ = 6 and 8. Assuming that the large inertial defect of 4.66 amu Å2 arises solely from A, a structure for the 2B2 state is obtained which gives r (NO) = 1.35 A? and an ONO angle of 105°. Alternatively, weighting the three rotational constants equally gives r = 1.29 A? and θ = 118°.  相似文献   

19.
The rs structure of thioformamide has been determined from the microwave spectra of the normal as well as isotopic species of the molecule. The structural parameters obtained assuming the planarity of the molecule are NHc = 1.0018 ± 0.006 A?, NHt = 1.0065 ± 0.003 A?, CN = 1.3582 ± 0.003 A?, CS = 1.6262 ± 0.002 A?, CHa = 1.096 ± 0.08 A?, ?HcNHt, = 121°42′ ± 40′, ?HcNC = 117°55′ ± 40′, ?HtNC = 120°22′ ± 30′, ?NCS = 125°16′ ± 15′ ?NCHa = 108°5′ ± 5°, and ?SCHa = 126°39′ ± 5°.The dipole moment is calculated from the Stark effects of the three transitions to be μa = 3.99 ± 0.02 D, μb = 0.13 ± 0.25 D, and μtotal = 4.01 ± 0.03 D, where the c component is assumed to be zero.The quadrupole coupling constant of the 14N nucleus is estimated using the doublet splittings observed for six Q-branch transitions; χcc - χbb = ?5.39 ± 0.15 MHz and χaa = 2.9 ± 1.2 MHz.Two sets of vibrational satellites are observed and assigned to the first excited state of the amino wagging and the NCS bending vibrations, respectively. The relative intensity measurement gives the vibrational energies of 393±40 cm?1 and 457 ± 50 cm?1 for NH2CHS and 293 ± 30 cm?1 and 393 ± 40 cm?1 for ND2CHS. The amino wagging inversion vibration in the molecule is discussed in comparison with that in formamide. It is most probable that the thioformamide molecule is also planar without any potential hump to the amino inversion at the planar configuration.  相似文献   

20.
The microwave spectrum of cis-1,2,3-triflurocyclopropane has been investigated in the region 8–40 GHz. A fit of the oblate symmetric top spectrum gives a rotational constant of 4064.925 ± 0.022 MHz. A molecular structure was determined using the rotational constants obtained from assignments of the monodeutero species and the carbon-13 species. The molecular parameters are r(CH) = 1.095 ± 0.002 A?, r(CC) = 1.507 ± 0.001 A?, r(CF) = 1.354 ± 0.001 A? and ∠(HCF) = 112.3 ± 0.2°. The dipole moment was determined to be 3.89 ± 0.02 D. The structural parameters are compared to other substituted cyclopropyl ring structures and to molecular orbital predictions as well as to related fluorocarbons. The molecule provides another example of the effect of fluorine substitutions on shortening adjacent bonds. It is also found that nonbonded F?F distances tend to be constant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号