首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Computations were carried out by employing the RHF and density functional theory (DFT) methods to investigate the geometries, atomic charges, harmonic vibrational frequencies for the 1,3-dithiole-2-thione (DTT), 1,3-dithiole-2-one (DTO), 1,3-dioxole-2-thione (DOT) and 1,3-dioxole-2-one (DOO) molecules and their radical cations. The geometrical parameters and atomic charges on various atomic sites of the DTT and DOT molecules and their radical cations suggest extended conjugation in these systems. Contrary to this, for the DOO+ and DTO+ ions there is no evidence in favour of such conjugation, however, the neutral molecules exhibit some conjugation. Harmonic forced field and vibrational mode calculations provided convincing theoretical evidence for the reassignment of some fundamental vibrational modes for all the four molecules. In going from the neutral species to the charged ions for all the four cases the CC stretching frequency is found to decrease drastically. The CS stretching frequency reduces drastically for the DTT and DOT molecules as compared to their radical cations whereas the CO stretching frequency is found to increase in going from the neutral molecule to its radical cation for the DOO and DTO molecules. The ring stretching mode with a1 symmetry and CC and CO/S stretching modes in these molecules appear to help in conversion of neutral molecule into respective radical cation and neighbouring radical cation into respective neutral molecule. Thus, there appears the feasibility of stretching vibrational mode coupling with electron transfer.  相似文献   

2.
The determination of a precise vibrational energy level scheme for the two-dimensional bending mode of tricarbon oxide sulfide (3-thioxo-1,2-propadiene-1-one), OCCCS, has been carried out by relative intensity measurements of rotational transitions up to the seventh excited vibrational state of ν7. The harmonic wavenumber ω7 was determined to be 84.50 ± 0.63 cm?1 while the anharmonicity constant χ77 was found to be ?0.62 ± 0.11 cm?1, respectively. A linear dependence of the expectation value of the electric dipole moment on the vibrational quantum number υ7 was found. All results confirm that in O CCCS the potential function describing the two-dimensional oscillator of ν7 is very harmonic without a perturbing barrier to linearity as was found in the case of OCCCO.  相似文献   

3.
Methods for the synthesis of substituted bis(2,5-dimethyl-3-thienyl)ethenes with 1,3-dioxole- and 1,3-oxazole-2-thione fragments as ethene bridges were developed. These compounds exhibit photochromic properties. Dedicated to Academician N. K. Kochetkov on the occasion of his 90th birthday. __________ Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 1299–1301, May, 2005.  相似文献   

4.
Raman and i.r. spectra of tetramethylcyclobutane-1-one-3-thione (TMCBOT) and the fully deuterated derivative TMCBOT-d12 have been recorded. A fairly complete set of vibrational frequencies and assignments are given for the two molecules. The CO stretching mode was observed as a very strong Fermi doublet in the infrared spectrum of TMCBOT at 1811/1782 cm−1. For TMCBOT-d12 a similar doublet was observed at 1808/1775 cm−1. The CS stretching mode was assigned to bands at 1303 cm−1 for TMCBOT and 1307 cm−1 for the deuterated molecule.  相似文献   

5.
The molecular structure of TTF dissolved in nematic liquid crystalline solvents has been determined from the proton magnetic resonance including couplings due to 13C in natural abundance. The molecule is puckered in a boat conformation with the SCHCHS planes making a dihedral angle of 13 ± 2° with the S2C  CS2 plane. The other structural parameters obtained are rCH = 1.085 ± 0.014 Å and the angel CCH = 123.7 ± 1.5°.  相似文献   

6.
The crystal and molecular structures of c-Hex-DAB (c-hexyl-NC(H)C(H)N-c-hexyl; DAB = 1,4-diaza-1,3-butadiene) and of trans-[PdCl2(PPh3)(t-Bu-DAB)] are reported. Crystals of c-Hex-DAB are monoclinic with space group C2/c and cell constants: a = 24.70(1), b = 4.660(2), c = 12.268(3)Å, β = 107.66(4)°, Z = 4. The molecule has a flat E-s-trans-E structure with bond lengths of 1.258(3)Å for the CN double bond and 1.457(3)Å for the central CC′ bond. These bond lengths and the NC-C′ angle of 120.8(2)° indicate that the C- and N-atoms are purely sp2-hybridized and that there is little or no conjugation within the central DAB skeleton. Crystals of trans-[PdCl2(PPh3)(t-Bu-DAB)] are triclinic with space group P-1 and cell constants: a = 17.122(3), b = 18.279(3), c = 10.008(5)Å, α = 96.77(2), β = 95.29(3), γ = 109.79(2). Z = 4. The t-Bu-DAB ligand is coordinated to the metal via one lone pair only. In this 2e; σ-N coordination mode the E-s-trans-E conformation of the free DAB-ligand is still present and the bonding distances within the DAB-ligand are hardly affected. [CN: 1.261(10)Å; CC′: 1.479(10)Å (mean).] The PdN-, NC- and central CC′-bond lengths are compared with those found in other metal -R-DAB complexes.  相似文献   

7.
Microwave spectra of CH2FCONH2, CH2FCOND(1)H(2), CH2FCONH-(1)D(2), and CH2FCOND2 are reported. The stable form of the molecule is shown to possess a planar FCCONH2 skeleton, with two out-of-plane hydrogens. The C-F and CO bonds are trans to one another and a weak intramolecular hydrogen bond is formed between the fluorine atom and the nearest amide group hydrogen atom stabilizing the identified rotamer. Other conformations are not present in concentrations exceeding 10% of the total. Nine vibrationally excited states were assigned. Six of these were attributed to the C-C torsional mode and one to the lowest in-plane bending mode. The first excited state of -NHz out-of-plane deformation mode was tentatively assigned. Relative intensity measurements yielded 114±14 cm?1 for C-C torsional mode and 239±20 cm?1 for the in-plane bending mode. The dipole moment was determined asμa = 1.27±0.01 D, μb = 1.67±0.02 D, and μtot = 2.10±0.02 D, while the 14N quadrupole coupling constants were found to be χaa = 1.6±0.2 MHz, χbb = 1.6±0.2 MHz and χcc = ?3.2±0.3 MHz.  相似文献   

8.
The microwave spectra of 13CH2OH-CHO, CH2OH-13CHO, and CH2OH-CH18O are reported and have been used in combination with previously published data on other monosubstituted glycolaldehydes to determine the substitution structure of the molecule as r(CO) = 1.209 Å, r(C-O) = 1.437 Å, r(C-C) = 1.499 Å, r(O-H) = 1.051 Å, r(C-Hald) = 1.102 Å, r(C-Halc) = 1.093 Å, r(O β H) = 2.007 Å, r(O β O) = 2.697 Å, ∠(C-CO) = 122°44', ∠(C-C-Hald) = 115°16', ∠(C-C-O) = 111°28', ∠(C-O-H) = 101°34', ∠(C-C-Halc) = 109°13', ∠(H-C-H) = 107°34', ∠(O-H β O) = 120°33', ∠(H β OC) = 83°41', and ∠(O-H, C0) = 24°14'. The intramolecular hydrogen bond and the other structural parameters are discussed and compared to related molecules. The dipole moment is redetermined to be μa = 0.262 ±0.002 D, μb = 2.33 ± 0.01 D, and μtot = 2.34 ± 0.01 D. Relative intensity measurements yielded 195 ± 30 cm?1 for the C-C torsional fundamental and 260±40 cm?1 for the lowest in-plane skeletal bending mode. Computations performed by the CNDO/2 method correctly predict the observed cis hydrogen-bonded conformer to be the energetically favoured one and in addition yield some indication of the existence of at least two other non-hydrogen-bonded forms of higher energy.  相似文献   

9.
Microwave studies (26.5–40 GHz) of further isotopic species of selenoketene formed by pyrolysis of 1,2,3-selenodiazole (12CH212C76,77,82Se, 12CH213C80Se and 13CH212C80Se) and by pyrolysis of 5-deuterio-1,2,3-selenodiazole (12CHD12C78,80Se) are reported. In conjunction with earlier results for 12CH12C78,80Se an rs structure has been derived with distances SeC (1.706 Å), CC (1.303 Å), CH (1.0908 A) and a HCH bond angle of 119.7°. The geometry of the CH2C moiety of selenoketene is closer to allene, CH2CCH2, than to ketene, CH2CO.  相似文献   

10.
The structures of isobutene and 2,3-dimethyl-2-butene have been studied by gas electron diffraction. For isobutene the rotational constants obtained by Laurie by microwave spectroscopy have also been taken into account. Leastsquares analyses have given the following rg bond distances and valence angles (rav for isobutene and rα for dimethylbutene): for isobutene, r(CC) = 1.342±0.003 Å, r(C-C)= 1.508±0.002Å, r(C-H, methyl) = 1.119±0.007 Å, r(C-H, methylene) = 1.095±0.020 Å, ∠(C-CC) = 122.2±0.2°, ∠(H-C-H) = 107.9±0.8°, and ∠(C-C-H) 121.3±1.5°; for dimethylbutene, r(CC)= 1.353 ±0.004 Å, r(C-C) = 1.511±0.002 Å, r(C-H) = 1.118± 0.004 Å, ∠(C-CC)= 123.9±0.5°, and ∠(H-C-H)= 107.0±1.0°, where the uncertainties represent estimated limits of experimental error. The bond distances and valence angles in these molecules and in related molecules are compared with one another. The CC and C-C bond distances increase almost regularly with the number of methyl groups, and the C-C bonds in isobutene and dimethylbutene are shorter than those in acetaldehyde and acetone by about 0.01 Å. Systematic variations in the C-CC angles suggest the steric influence of methyl groups.  相似文献   

11.
T1 ← S0 absorption and T1 → S0 phosphorescence spectra of neat cystalline hexachloroacetone have been analyzed at 4.2°K. From the lifetime and energy the upper state is assigned as 3*. The spectra are sharp compared to other aliphatic ketones, with the 0-0 band at 26 248 ± 2 cm ?1. The phosphorescence shows two strong progressions; one involving the CO stretching mode at 1784 cm?1 (x), the other a long progression of at least 8 bands involving a mode at 143 cmt-1 (a). The 143 cm?1 progression forming mode can best be asigned to the CO out-of-plane wagging vibration. The absorption shows the same two strong progressions, reduced in frequency to 1270 cmt-1 and 123 cm?1, respectively, but with the progression in mode a broadened with increasing n. The broadening is interpreted as arising from inversion doublets; the close harmonicity up to n = 5 allowing the potential barrier to inversion to be estimated as > 700 cm?1. A feature of the spectra is the absence of low frequency torsional modes suggesting lack of pseudo Jahn-Teller distortion of the triplet state potential surface. For comparison, the phosphorescence of crystalline hexafluoroacetone was also studied at 4.2°K. The spectrum exhibits broad bandedness with a 00 band tentatively assigned at 26 870 ± 20 cm?1.  相似文献   

12.
The molecular structure of tetraselenafulvalene (TSeF) dissolved in a nematic crystal solvent is determined from the PMR spectra including 77Se satellites. The molecule is found to be either puckered in a boat form or possessing a broad potential function for the in-phase puckering motion. The dihedral angle between the SeHCCHSe and Se2CCSe2 plane is 15.5 ± 0.6°. The structure is in good agreement with that of the dimerized TSeF in the solid state. Some 77Se indirect coupling constants are also determined.  相似文献   

13.
The gas phase molecular structure of 2,3-dimethyl-2-butene has been investigated by the electron, diffraction technique. The following structural parameters (ra structure) have been obtained: CC = 1.336±0.004 Å; C-C = 1.505±0.002 Å; C-H = 1.092±0.003 Å; ∠CC-C = 123.4±0.4°; ∠C-C-H = 110.5±0.7°; methyl torsional angle CC-C-H = 31±3°. If local C3v symmetry is assumed then a twist of 13 ±4° of the carbon skeleton is observed. This twist reduces to virtually 0° if no local symmetry is imposed on the methyl group. The twisted structure is in good agreement with that obtained by valence force-field calculations.  相似文献   

14.
Vibrational data of vapour, liquid and matrix-isolated fluorocarbonyl isocyanate, FC(O)NCO, were investigated. A subsequent normal coordinate analysis was performed for the A′ species of the predominant planar cis conformer (CO double bond cis with respect to the vicinal NC double bond). The following internal force constants were derived: fCO= 12.88 mdyn Å−1, fCF=6.20 mdyn Å−1 and FCN= 4.42 mdyn Å−1.  相似文献   

15.
The structures of propene and 3,3,3-trifluoropropene have been studied by electron diffraction intensities measured in the present study and rotational constants reported in the literature. The following average structures have been determined: For propene, rg(CC) = 1.342 ± 0.002 Å, rg(C-C) = 1.506 ± 0.003 Å, rg(C-H)vinyl = 1.104 ± 0.010 Å, rg(C-H)methyl = 1.117 ± 0.008 Å, ∠(C-CC) = 124.3 ± 0.4°, ∠(CC-H) = 121.3 ± 1.4°, and ∠(C-C-H) = 110.7 ± 0.9°; for trifluoropropene, rg(CC) = 1.318 ± 0.008 Å, rg(C-C) = 1.495 ± 0.006 Å, rg(C-H)= 1.100 ± 0.018 Å, rg(C-F) = 1.347 ± 0.003 Å, ∠(C-CC) = 125.8 + 1.1°, ∠(C-C-F) = 112.0 ± 0.2°, where the valence angles refer to the rav structure, and the uncertainties represent estimated limits of experimental error. A simple set of quadratic force constants for each molecule has been estimated. Regular trends have been observed in the CC and C-C bond distances and the C-CC angles in these and related molecules. Significant differences between the CC, C-C and C-F distances and the C-C-F angle in trifluoropropene and in hexafluoroisobutene reported by Hilderbrandt et al. have been indicated.  相似文献   

16.
Abstract

The 1H, 13C and 77Se NMR chemical shifts for 1,3-dithiolium, 1,3-thiaselenolium and 1,3-diselenolium tetrafluoroborates which are unsubstituted in the 4 and 5 positions and are unsubstituted or contain ethylseleno, ethylthio or morpholino groups in the 2 positions are reported. The dependence of the chemical shifts on the substituents and ring hetero atoms are discussed and shift increments given. The study includes the 13C shift effects for the following series of compounds: (a) thiotropone, ethylthiotropylium cation and tropylium cation; the iso-π-electronic heterocycles (b) thiopyrane-2-thione, 2-ethyl-thiothiopyrylium cation and the thiopyrylium cation, (c) 1,2-dithiole-3-thione, 3-ethylthio-1,2-dithiolium cation and the 1,2-dithiolium cation, and (d) 1,3-dithiole-2-thione, 2-ethylthio-1,3-dithiolium cation and the 1,3-dithiolium cation. Linear correlations between δ (1H) and δ (13C), δ (77Se) and δ (13C) and δ (13C) and δ (13C) (i) of neighbouring ring positions and (ii) between ring and substituent atoms proves, that changes in the electron density distribution of the ring systems is the intrinsic reason for the shift effects discussed. In particular the 77Se/13C shift correlations show, that δ (77Se) of double coordinated selenium atoms is determined by the 〈r ?34p term in the contribution of paramagnetic screening σp(77Se).

Es werden die 1H-,13C- und 77Se-NMR-chemischen Verschiebungen der in 4/5-Position unsubstituierten 1,3-Dithiolium-, 1,3-Thiaselenolium- und 1,3-Diselenolium-tetrafluoroborate, die in 2-Stellung unsubstituiert sind bzw. den Ethylseleno-, Ethylthio- oder Morpholinrest tragen, mitgeteilt und in Abhängigkeit von den Substituenten und den Ring-Heteroatomen diskutiert.

In die Betrachtung einbezogen sind die 13C-Verschiebungseffekte beim Übergang von den Thionen über die SEt-substituierten Kationen zu den Kation-Grundverbindungen in der Reihe Thiotropon/Ethyl-thiotropyliumion/Tropyliumion und der jeweiligen iso-π-elektronischen Schwefelheterocyclen Thiopyran-2-thion/2-Ethylthiothiopyryliumion/Thiopyryliumion, 1,2-Dithiol-3-thion/3-Ethylthio-1,2-dithioliumion/1,2-Dithioliumion und 1,3-Dithiol-2-thion/2-Ethylthio-1,3-dithioliumion/1,3-Dithioliumion.

Aufgefundene lineare Korrelationen zwischen δ (1H) und δ (13C), δ (77Se) und δ (13C) sowie δ (13C) und δ (13C) sowohl benachbarter Ringpositionen als auch zwischen Ring- und Substituentenatomen beweisen, daß als Ursache der diskutierten Verschiebungseffekte im Wesentlichen Änderungen der Elektronendichteverteilung der Ringsysteme anzusehen sind. Speziell die 77Se/13C-Verschiebungskorrelationen zeigen, daß für δ (77Se) zweifach koordinierter Selenatome der 〈r ?34p-Term im σp (77Se)-Verschiebungsbeitrag entscheidend ist.  相似文献   

17.
The complete assignment of the vibrational spectra of 2,5-dimethyl-2,4-hexadiene, 4-methyl-1,3-pentadiene and (E)-2-methyl-1,3-pentadiene was obtained from a comparative analysis of their i.r. and Raman spectra (solid, liquid and gas) in the range 3200-50 cm−1. It is shown that particular vibrational motions strongly interact to give rise to very characteristic modes depending on the site of methyl substitution. The comparison of our results with those of analogous shorter and larger polyenes and polyenals allows us to discuss the various local coupled motions characteristic of unsubstituted (CHCH CH)CH and methyl substituted (CHC(CH3)CH), ((CH3)2CCH) or (CH3CHCH) fragments in polyenic chains.  相似文献   

18.
The molecular structure of fumaric acid was studied by means of gas electron diffraction at 260° C. The molecular parameters and their standard deviations obtained for a C2h model are (ra distances in Å, angles in degrees): CO: 1.202(0.002), C-O: 1.341(0.006), C-C: 1.486(0.004), CC: 1.356(0.016). C-C-O: 112.1(1.0), C-CO: 124.4(1.1), C-CC: 121.8(1.2). From the available data on carboxylic acids the weighted average deformation of the structure of a carboxylic group on crystallization was determined; a significant expansion of the O-H bond (0.040 Å ), the CO bond (0.010 Å ) and the C-C-O bond angle (1.5° ) and a shrinkage of the C-O bond (0.041 Å ), the Cα-C bond (0.012 Å ) and the C-CO bond angle (2.0° ) was found. The energy for these deformations was estimated to be 1.8 kcal mol?1.  相似文献   

19.
Reactions of imidazolidine-2-thione (Imt), 1,3-diazinane-2-thione (Diaz) and 1,3-diazipane-2-thione (Diap) with mercury(II) selenocyanate in acetonitrile resulted in formation of 2?:?1 complexes. Both solid state and solution NMR, confirm the exocyclic sulfur atom to be the donor in all cases. 199Hg shielding tensors and anisotropies were calculated from the solid-state NMR spectra. Based on the solid NMR data a distorted tetrahedral disposition of ligands around mercury is proposed.  相似文献   

20.
We have obtained 5-(2-pyridyl)[1,3]dithiolo[4,5-b][1,4]dithiine-2-thione for the first time by cycloaddition of 2-ethynylpyridine to 4,5-dihydro-1,3-dithioltrithione (isotrithionedithiol). We have studied this thione, 5-(2-pyridyl)- and 5-(4-pyridyl)-5,6-dihydro[1,3]dithiolo[4,5-b][1,4]dithiine-2-thiones by mass spectroscopy and also IR, UV, 1H and 13C NMR spectra. We have determined the crystal and molecular structure of 5-(2-pyridyl)-5,6-dihydro[1,3]dithiolo[4,5-b][1,4]dithiine-2-thione.__________Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 3, pp. 429–434, March, 2005.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号