首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The molecular structure of norbornene has been investigated in the gas phase by combining electron diffraction data with microwave spectroscopic rotational constants. The interatomic distances (rg) and bond angles were obtained by applying a least squares program to the refined experimental molecular diffraction intensities. The CC bond length was found to be 1.336 ± 0.002 Å while the
) bond length was 1. 529 ± 0.007 Å. Other bond lengths and angles included (IUPAC numbering system was used for norbornene): C1-C6 = 1.550 ± 0.020 Å, C1-C7 = 1.566± 0.005 Å, C5-C6 = 1.556 ± 0.005 Å, C-Have. = 1.103 ± 0.003 Å, ∠C1C2C4 = 95.3°. The dihedral angle between planes C1C2C3C4 and C1C6C5C4 is 110.8 ± 1.5° while that between C1C2C3C4 and C1C7C4 is 122.3°. The moments of inertia calculated from ED structure are in good agreement with microwave spectroscopic values.  相似文献   

2.
The molecular structure of 1,2,4-triazole has been determined by gas phase electron diffraction. The intemuclear distances and bond angles were obtained by applying a least-squares analysis to the experimental intensity. The bond distances (rg) and bond angles were N1-N2 = 1.380 ± 0.010 Å, N2C3 = 1.329 ± 0.009 Å, C3-N4 = 1.348 ± 0.009 Å, N1-C5 = 1.377 ± 0.004 Å, N4C5 = 1.305 Å (calculated value). N-H = 0.990 Å, C-H = 1.054 Å, ∠N1N2C3 = 102.7± 0.5°, ∠N2C3N4 = 113.8 ± 1.3°, ∠N2N1C5 = 108.9 ± 0.8°, ∠H1N1N2 = 110.9°, ∠H2C3N4 = 119.2°, ∠H3C5N1 = 131.0°, ∠C3N4C5 = 105.7° (calculated value) and ∠N4C5N1 = 108.7° (calculated value).  相似文献   

3.
The structure of 1 -chloro-1 -si labicyclo( 2.2.2 )octane is determined by gas-phase electron diffraction. The molecule is found to have a large amplitude twisting motion with a double minimum quartic potential function of the form V(φ) = Vo[1 + (φ/φo)4 - 2(φ/φo)2]. Least-squares analysis of the experimental data gives values of 1.4(0.8) kcal mole? for Vo and 17.5(2.5)° for φo. Other structural parameters for the “quasi-C3v” cage-like molecule include: rg(Si-Cl) = 2.061(3) Å, rg(Si-C) = 1.863(3) Å, rg(C-Cav) = 1.559(2) Å, and rg(C-Hav) = 1.098(7) Å. Several valence angles exhibit large deviations from tetrahedral values, e.g. ∠Cl-Si-C2 = 114.6(0.2)°, ∠Si-C2-C3 = 105.8(0.4)°, ∠C2-C3-C4 = 114.2(1.2)°, ∠C-3-C4-C5 = 111.4(0.8)° and ∠C2-Si-C6= 103.9(0.2)°. Many of the structural features in this strained polycyclic compound. Including the nature of the quartic potential function, can be rationalized in terms of a simple molecular mechanics model. A new method for the calculation of an analytical Jacobian of the intensity function with respect to parameters of the potential function is also discussed.  相似文献   

4.
The parent hydrocarbon, Dewar-benzene, has been studied by gas phase electron diffraction analysis. Assignment of C2v symmetry gave excellent agreement between the experimental and theoretical data. The structural parameters obtained were in good agreement with previous electron diffraction structures of substituted derivatives of the Dewar-benzene series. The structural parameters with error limits are (cf. Fig. 2): r(C3-C6) = 1.574 ± 0.005 Å r(C2-C3) = 1.524 ± 0.002 Å, r(C1-C2) = 1.345 ± 0.001 Å, r(C3-C9) = 1.134 ± 0.004 Å, r(C1-C7) = 1.124 ± 0.004 Å, ∠C1C6C5 = 116.7 ± 0.6°, ∠C3C6C1 = 85.7 ± 0.2°, ∠C6C3C9 = 108.0 ± 3.0°, ∠C3C2C8 = 126.7 ± 2.5°, and α = 117.25 ± 0.6°. The angle γ was assumed to be 0°.  相似文献   

5.
The molecular structures of gaseous tetrafluoro-p-benzoquinone (p-fluoranil) and tetramethyl-p-benzoquinone (duroquinone) have been investigated by electron diffraction. Except for the methyl group hydrogen atoms, the molecules are planar to within experimental error, but small deviations from planarity are completely compatible with the data. Values for the geometrical parameters (radistances and rα with parenthesized uncertainties of 2σ including estimated uncertainty in the electron wavelength and correlation effects, are as follows. Tetrafluoro-p-benzoquinone: D2h symmetry (assumed); r(C0) = 1.211(6) Å, r(CC) = 1.339(12) Å, r(C-C) = 1.489(5') Å, r(C-F) = 1.323(5) Å, ∠C-C-C = 116.8(7)° and ∠C-C-F = 116.1(7)°. Tetramethyl-p-benzoquinone: C2h symmetry (assumed);r(C-H) = 1.102(18) Å, r(CO) = 1.229(8) Å, r(CC) = 1.352(8) Å, r(Csp2-Csp2) = 1.491(11) Å, r(Csp2-Csp3) = 1.504(12) A, ∠C-CO-C = 120.8(8)°. ∠C-C-CH3 = 116.1(8)°, ∠C-C-H = 110.5(34)° and α1 = α2 (methyl torsion = 30° (assumed).  相似文献   

6.
The gas phase molecular structure of 2,3-dimethyl-2-butene has been investigated by the electron, diffraction technique. The following structural parameters (ra structure) have been obtained: CC = 1.336±0.004 Å; C-C = 1.505±0.002 Å; C-H = 1.092±0.003 Å; ∠CC-C = 123.4±0.4°; ∠C-C-H = 110.5±0.7°; methyl torsional angle CC-C-H = 31±3°. If local C3v symmetry is assumed then a twist of 13 ±4° of the carbon skeleton is observed. This twist reduces to virtually 0° if no local symmetry is imposed on the methyl group. The twisted structure is in good agreement with that obtained by valence force-field calculations.  相似文献   

7.
An electron diffraction study of 1,2,3,3-tetrachloro-4,5-dimethyl spiro[2.3]-hexa-1,4-diene (Spiro) in the gas phase, confirmed the atom connectivities and led to a structure with roughly tetrahedral bonding about the spiro-carbon atom. The internuclear distances were obtained with moderate precision. The optimum least squares fitting of the experimental molecular scattering function gave a model with Cs symmetry. The rg values are: (C3-C6) = 1.54 (.10) Å (assumed), (C2-C3) = 1.52 (.02) Å, <CC >av= 1.35, (.010) Å, (C5-C6) = 1.46 (.02) Å, (C4-C7) = 1.52 (.03) Å, (C-Cl) = 1.69 (.03) Å and (-C-Cl) = 1.77 (.03) Å. The angle (θ) between the C3-C6 bond and the cyclopropene plane is 127.5°. The large value for <CC >av is compared with the X-ray crystal structure result, and with the structures of other cyclopropenes and cyclobutenes.  相似文献   

8.
The structures of tetrachloro-p-benzoquinone and tetrachloro-o-benzoquinone (p- and o-chloranil) have been investigated by gas electron diffraction. The ring distances are slightly larger and the carbonyl bonds slightly smaller than in the corresponding unsubstituted quinones. The molecules are planar to within experimental error, but small deviations from planarity such as those found for the para compound in the crystal are completely compatible with the data. Values for the geometrical parameters (ra distances and bond angles) and for some of the more important amplitudes (l) with parenthesized uncertainties of 2σ including estimated systematic error and correlation effects are as follows. Tetrachloro-p-benzoquinone: D2h symmetry (assumed); r(CO) = 1.216 Å(4), r(CC) = 1.353 Å(6), r(C-C) = 1.492 Å(3), r(C-Cl) = 1.701 Å(3), ∠C-C-C = 117.1° (7), ∠CC-C1 = 122.7° (2), l(CO)= 0.037 Å(5), l(CC) = l(C-C) - 0.008 Å(assumed) = 0.049 Å(7), and l(C-Cl) = 0.054 Å(3). Tetrachloro-o-benzoquinone: C2v symmetry (assumed); r(CO) = 1.205 Å(5), r(CC) = 1.354 Å(9), r(Ccl-Ccl) = 1.478 Å(28), r(Co-Ccl) = 1.483 Å(24), r(Co-Co) = 1.526 Å(2), r(C-Cl)= 1.705 Å(3), <Co-CO = 121.0° (22), ∠C-C-C = 117.2° (9), ∠Cco, ClC-Cl = 118.9° (22), ∠Cccl, ClC-Cl = 122.2°(12), l(CO) = 0.039 Å(5), and l(Ccl-Ccl) = l(Co-Ccl) = l( Co-Co) = l(CC) + 0.060 Å(equalities assumed) = 0.055 Å(9). Vibrational'shortenings (shrinkages) of a few of the long non-bond distances have also been measured.  相似文献   

9.
Hexafluoro-Dewar-benzene has been studied by the electron-diffraction method. A model with C2v symmetry gives excellent agreement between experimental and theoretical data. The structural parameters with error limits are (cf. Fig. 1): r(C1-C4)= 1.598 ±0.017 Å, r(C1-C2) = 1.505 ±0.005 Å, r(C2-C3) = 1.366 ± 0.015 Å, r(C1-F1) = 1.328±0.015 Å, r(C2-F2) = 1.319±0.007 Å, ∠F1C1C4 = 118.7±0.7°, ∠F2C2C3 = 133.6±0.7°, τ= 121.8±2.0°, and δ = -7.5±2.0°. Molecular orbital calculations by the CNDO/2 method gave τ = 119.8° and δ = ?4.2°.  相似文献   

10.
The average molecular structures of 2,3-diazabicyclo[2.2.1]hept-2-ene and 2,3-diazabicyclo[2.2.2] oct-2-ene have been determined by electron diffraction in the gas phase. The structural parameters were obtained by applying a least squares analysis on the molecular scattering intensity functions. For 2,3-diazabicyclo[2.2.1]hept-2-ene, Cs symmetry was assumed in calculating the geometry of the molecule. The parameters thus determined are: N3=N2 = 1.221 Å, N3- C4 = 1.445 Å, C4-C5 = 1.538 Å, C-H(ave.) = 1.112 Å, < C1N2N3 = 116.3°, < N3C4C5 = 105.2°, < C1C4C5 = 71.5°, C4-C7 = 1.547 Å, C5-C6 = 1.530 Å, < C1C7C4 = 108.0°. For 2,3-diazabicyclo[2.2.2]oct-2-ene, C2vsymmetry was assumed. The geometrical parameters are: N3 = N2 = 1.243 Å, N3-C4 = 1.473 Å, C4-C5 = 1.550 Å, C5-C6 = 1.516 Å, C-H(ave.) = 1.119 Å,< C1N2N3 = 115.1°, < N3C4C5 = 109.1°, < C6C1C4 = 71.6°.  相似文献   

11.
The geometric structure of 2,2-dimethylpropylidynephosphine, (CH3)3C-CP, in the gas phase has been determined by joint analysis of electron diffraction and microwave spectroscopy data. The following parameters (rav values) were obtained: PC1 = 1.536(2), C1-C2 = 1.473(4),C2-C3 (methyl) = 1.543(2), C3-H = 1.080(3) Å, ∠C1-C2-C3 = 109.0(2) and ∠H-C3H = 108.8(5)°. Error limits are 2σ values.  相似文献   

12.
The molecular structure and conformation of 2,3-dichloro-1-propene have been determined by gas-phase electron diffraction at nozzle temperatures of 24, 90 and 273°C. The molecules exist as a mixture of two conformers with the chlorine atoms anti (torsion angle ∠φ = 0°) or gauche (∠φ = 109°) to each other and with the anti form the more stable. The composition (mole fraction) of the vapor with uncertainties estimated at 2σ was found to be 0.55 (0.08), 0.49 (0.08) and 0.41 (0.10) at 24, 90 and 273°, respectively. These values correspond to an energy difference with estimated standard deviation ΔE° = E°g-E°a = 0.7 ± 0.3 kcal mol?1 and an entropy difference ΔS° = S°g-S°a = 0.6 ± 0.9 cal mol?1 K?1. Some of the diffraction results, together with spectroscopic observations, permit the evaluation of an approximate torsional potential function of the form 2V = V1 (1 - cos φ) + V2 (1 - cos 2φ) + V3 (1 - cos 3φ); the results are V1 = 4.4 ± 0.5, V2 = ?2.9 ± 0.5 and V3 = 4.8 ± 0.2, all in kcal mol?1. The results at 24°C for the distance (ra) and angle (∠α) parameters, with estimated uncertainties of 2σ, are: r(Csp2-H) = 1.098(0.020)Å, r(Csp3-H) = 1.103(0.020)Å, r(CC) = 1.334(0.009)Å, r(C-C) = 1.504(0.013)Å, r(Csp2-Cl) = 1.752(0.021)Å, r(Csp3-Cl) = 1.776(0.020)Å, ∠C-CC = 127.6(1.1)°, ∠Csp3-Csp2-Cl = 110.2(1.0), ∠Csp2-Csp3-Cl = 113.1(1.2)°, ∠H-Csp3-H = 109.5° (assumed), ∠CC-H = 120.0° (assumed) and ∠φ = 108.9(3.4)°.  相似文献   

13.
The molecular structure of trifluoroethene was determined from electron diffraction data and the microwave rotational constants of the parent and deuterated molecule, corrected for zero-point vibrational motion. A GVFF adjusted to fit the vibrational frequencies was used for the correction. The molecule was found to be planar. Assuming equal geminal C1—F bond lengths, the following rg distances and rav angles are found: C1—F = 1.316 ± 0.011 Å, C2—F = 1.342 ± 0.024 Å, CC = 1.341 ± 0.012 Å, C—H = 1.100 ± 0.02 Å, ∠C—C—F1 = 123.1 ± 1.5°. ∠C—C—F2 = 124.0 ± 0.6°, ∠C—C—F3 = 120 ± 0.7° (Fl trans to F3) and ∠C—C—H = 124.0 ± 1.7°.The error limits include 3σ (σ = estimated standard deviation) and estimates of the systematic errors. The analysis suggests that all the C1—F distances are not equivalent, neither are the C2—C1—F angles, though the differences are not significant (10% level).  相似文献   

14.
A combined electron diffraction and quantum-chemical (MP2/6-31G**) study of the molecular structure of 2-methylbenzenesulfochloride at 336(5) K was carried out. It was found that the gas phase contained only one conformer, C 1. The following structural parameters were obtained: r h1(C-H)av = 1.095(8) Å, r h1(C-C)Ph = 1.402(4) Å, r h1(CPh-Cmeth) = 1.507(13) Å, r h1(CPh-S) = 1.763(6) Å, r h1(S=O) = 1.418(4) Å, r h1(S-Cl) = 2.048(5) Å, ∠(H-C-H)meth/av = 107.3(96)°, ∠(Cl-S-O)av = 106.4(3)°, ∠CPh-S-Cl = 100.8(9), ∠O=S=O = 120.8(10)°. The CC-CS-S-Cl torsion angle that defines the position of the S-Cl bond relative to the plane of the benzene ring is 75.6(20)°. The B3LYP/6-311+G** calculated barriers of internal rotation of the methyl and sulfochloride groups are 1.2 kcal/mol and V 01 = 10.2 (V 02 = 4.1) kcal/mol, respectively.  相似文献   

15.
Microwave spectra of isotopic species α-13C and β-13C of tetrahydroselenophene molecules have been investigated and rotational constants determined: A = 5608.98 Mc, B = 2819.532 Mc, C = 2022.624 Mc forα-13C isotopic species and A = 5695.94 Mc, B = 2770.714 Mc, C = 2009.166 Mc for β-13C isotopic species. The rs-ring structure was found to be Se-C2 = 1.963 Å, C2-C3 = 1.549 Å, C3-C4 = 1.527 Å, ∠C5SeC2 = 90° 44', ∠SeC2C3 = 104° 58', ∠C2C3C4 = 106° 52', the angle of twist = 29° 44'.  相似文献   

16.
The structure of 1,1-difluoroethylene was determined, from gas phase electron diffraction data obtained independently in Leiden and Tokyo and the rotational constants of F2CCH2, F2CCHD and F2CCD2 derived from the microwave study by Chauffoureaux. The two electron diffraction data agreed without significant discrepancy. From a joint least squares analysis of the diffraction and microwave data, the following rg bond distances and rz bond angles were derived: CC = 1.340 ± 0.006 Å, C-F = 1.315 ± 0.003 Å, C-H = 1.091 ± 0.010 Å, ∠C-C-F = 124.7 ± 0.3°, ∠C-C-H = 119.0 ± 0.4°, where the uncertainties represent estimated limits of error.  相似文献   

17.
2-Chloro-3-fluoro-1-propene has been studied by electron diffraction, and the molecule was found to exist in equilibrium between a syn and a gauche conformation, with the syn conformation as the most stable. The most important structure parameters with standard deviation are: rg(CC) = 1.338(6) Å,rg(C—C) = 1.505(5) Å, rg(C—F) = 1.378(4) Å, rg(C-Cl) = 1.743(3) Å, ∠CC—Cl = 123.0(7)°, ∠CC—C = 125.6(6)° and ∠C—C—F = 111.2(8)°.A force field was determined by a least-squares refinement to vibrational frequencies. Mean square amplitudes of vibration and perpendicular amplitude correction coefficients have been calculated. The mean square amplitudes of vibration from the electron diffraction data are in very good agreement with the values calculated from the spectroscopic data.  相似文献   

18.
The molecular structure of gaseous 2-cyclopentene-1,4-dione has been studied by electron diffraction. The molecule is planar to within the experimental error. The results obtained for some of the more important parameters with estimated uncertainties of 2σ are r(C-H) = 1.093 Å (0.013), r(C0) = 1.208 Å (0.002), r(CC) = 1.341 Å (0.005), r(CH-CO) = 1.493 Å (0.005), r(CO-CH2) = 1.525 Å (0.005), ∠CC-C = 110.4° (0.3), ∠CH-CO = 124.9° (1.1), ∠CC-H. = 118.7° (5.8), ∠H-C-H = 113.2° (8.7) l(C-H) = 0.0853 A (0.0113), l(CO) = 0.0428 Å (0.0021), l(CC) = 0.0448 Å (0.0037) and l(C-C) = 0.0561 Å (0.0029). The structure is discussed in connection with the structures of related molecules.  相似文献   

19.
A combined gas-phase electron diffraction and quantum chemical (B3LYP/6-311+G**, B3LYP/cc-pVTZ, MP2/6-31G*, and MP2/cc-pVTZ) study of the structure of the 4-nitrobenzene sulfonyl chloride molecule is performed. It is found that at a temperature of 391(3) K only one conformer with C s symmetry is present in the gas phase. The following experimental values of structural parameters are obtained: r h1(C-H)av = 1.086(6) Å, r h1(C-C)av = 1.395(3) Å, r h1(C1-S) = 1.773(4) Å, r h1(S=O) = 1.423(3) Å, r h1(S-Cl) = 2.048(4) Å, r h1(N-O) = 1.224(3) Å, r h1(N-C4) = 1.477(3) Å, ∠(C1-S=O) = 109.0(4)°, ∠(Cl-S-O) = 106.7(2)°, ∠C1-S-Cl = 100.2(13)°, ∠O=S=O = 122.9(11)°, ∠O=N=O = 123.6(5)°. The C2-C1-S-Cl torsion angle that characterizes the position of the S-Cl bond relative to the benzene ring plane is 89(4)°. The NO2 group lies in the benzene ring plane. Internal rotation barriers calculated by B3LYP/6-311+G** and MP2/6-31G* methods are: V 1 = 4.7 kcal/mol and 5.3 kcal/mol for the sulfonyl chloride group; V 2 = 4.9 kcal/mol and 6.0 kcal/mol for the nitro group.  相似文献   

20.
The molecular structure of gaseous dichloromaleic anhydride has been investigated by electron diffraction at a nozzle-tip temperature of 164–170°C. The molecule is planar to within experimental error, but small deviations from planarity corresponding to torsion up to about 10° around the carbon-carbon single bonds cannot be ruled out. Values of the more important rα distances and angles with estimated 2σ uncertainties are r(CO) = 1.188(2) Å, r(CC) = 1.332(5) Å, r(C-O) = 1.389(3) Å, r(C—C) = 1.495(3) Å, r(C—Cl) = 1.685(2) Å, ∠CC-Cl = 129.4(2)°, ∠C-CO = 128.5(4)° and ∠CC—C = 107.9(2)°. The shortening of the carbonyl bond relative to that in maleic anhydride itself is discussed in terms of a possible general effect of vicinal substitution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号