The molecular structure of vinyldimethylchlorosilane has been determined by gas phase electron diffraction at room temperature. The least squares values of the bond lengths (rg) and bond angles (∠α) are : r(CH) = 1.086(6) Å, r(CC) = 1.347(5) Å, r(SiC=) = 1.838(6) Å, r(SiC) = 1.876(3) Å, r(SiCl) = 2.078(2) Å, ∠CCSi = 127.8° (1.2) and ∠=CSiCl = 107° (1). Models with pure syn form and a mixture of syn and gauche gave equally good agreement with the diffraction data. 相似文献
Chloroacetyl chloride is studied by gas-phase electron diffraction at nozzle-tip tempera- tures of 18, 110 and 215°C. The molecules exist as a mixture of anti and gauche confor- mers with the anti form the more stable. The composition (mole fraction) of the vapor with uncertainties estimated at 2σ is found to be 0.770 (0.070), 0.673 (0.086) and 0.572 (0.086) at 18, 110 and 215°C, respectively. These values correspond to an energy difference with estimated standard deviation ΔEo = Eog -Eoa = 1.3 ± 0.4 kcal mol?1 and an entropy difference ΔSo = Sog -Soa = 0.7 ± 1.1 cal mol?1 K?1. Certain of the diffraction results permit the evaluation of an approximate torsional potential function of the form 2V = V1(1 - cos φ) + V2(1 - cos 2φ) + V3(1 - cos 3φ); the results are V1 = 1.19 ± 0.33, V2 = 0.56 ± 0.20 and V3 = 0.94 ± 0.12, all in kcal mol?1. The results for the distance (ra), angle (∠α) and r.m.s. amplitude parameters obtained at the three temperatures are entirely consistent. At 18°C the more important parameters are, with estimated uncertainties of 2σ, r(C-H) = 1.062(0.030) Å, r(CO) = 1.182(0.004) Å, r(C-C) = 1.521(0.009) Å. r(CO-Cl) = 1.772(0.016) Å, r(CH2-Cl) = 1.782(0.018) Å, ∠C-C-0 = 126.9(0.9)°, ∠CH2-CO-C1 = 110.0(0.7)°,∠CO-CH2-C1 = 112.9(1–7)°, ∠H-C-H = 109.5° (assumed), ∠φ (gauche torsion angle relative to 0° for the anti form) = 116.4(7.7)°, δ (r.m.s. amplitude of torsional vibration in the anti conformer) == 17.5(4.2)°. 相似文献
The molecular structure of 2,2,4,4,6,6-hexamethyl-1,3,5-trimethylenecyclohexane has been determined in the gas phase at a nozzle tip temperature of 340 K. The electron diffraction data were found to be consistent with a model where the cyclohexane ring adopts a distorted twist-boat conformation. The averaged geometrical parameters (r(g) and 90 degree angle (alpha)) obtained from least squares analysis are r(C=C) = 1.346(4) A, r(C-C)(ring) = 1.537(1) A, r(C-C)(Me) = 1.543(1) A, 90 degree angle C(6)C(1)C(2) = 117.5(11) degrees, 90 degree angle C(1)C(2)C(3) = 113.1(12) degrees, and 90 degree angle MeCMe = 108.2(13) degrees. The experimental results are consistent with the results from HF/6-311G(d) and MP2/6-311G(d) calculations where the distorted twist-boat form is found to be lower in energy than the chair form by 9.85 and 10.7 kcal/mol, respectively. 相似文献
The molecular structure of chloronitromethane was studied in the gas phase at a nozzle-tip temperature of 373 K. The experimental data were interpreted using a dynamic model where the molecules are undergoing torsional motion governed by a potential function: V = V2/2x(1 - cos 2tau) + V4/2x(1 - cos 4tau) with V2 = 0.81(30) and V4 = 0.12(40) kcal/mol (tau is the dihedral angle between the C-Cl and N-O bond). The conformer with a zero degree dihedral angle is the most stable conformer. Comparison with results from HF/MP2/B3LYP 6-311G(d,p) calculations were made. The important geometrical parameter values (for the eclipsed form) obtained from least-squares refinements are the following: r(C-H) = 1.061(18)A, r(C-N) = 1.509 (5)A, r(N-O) = 1.223(1)A, r(C-Cl) = 1.742(2)A, angleClCN = 115.2(7) degrees, angleO4NC = 118.9(10) degrees, angleO5NC = 114.9(16) degrees, and angleClCH 115(4) degrees. 相似文献
The molecular structure and conformation of 2,3-dichloro-1-propene have been determined by gas-phase electron diffraction at nozzle temperatures of 24, 90 and 273°C. The molecules exist as a mixture of two conformers with the chlorine atoms anti (torsion angle ∠φ = 0°) or gauche (∠φ = 109°) to each other and with the anti form the more stable. The composition (mole fraction) of the vapor with uncertainties estimated at 2σ was found to be 0.55 (0.08), 0.49 (0.08) and 0.41 (0.10) at 24, 90 and 273°, respectively. These values correspond to an energy difference with estimated standard deviation ΔE° = E°g-E°a = 0.7 ± 0.3 kcal mol?1 and an entropy difference ΔS° = S°g-S°a = 0.6 ± 0.9 cal mol?1 K?1. Some of the diffraction results, together with spectroscopic observations, permit the evaluation of an approximate torsional potential function of the form 2V = V1 (1 - cos φ) + V2 (1 - cos 2φ) + V3 (1 - cos 3φ); the results are V1 = 4.4 ± 0.5, V2 = ?2.9 ± 0.5 and V3 = 4.8 ± 0.2, all in kcal mol?1. The results at 24°C for the distance (ra) and angle (∠α) parameters, with estimated uncertainties of 2σ, are: r(Csp2-H) = 1.098(0.020)Å, r(Csp3-H) = 1.103(0.020)Å, r(CC) = 1.334(0.009)Å, r(C-C) = 1.504(0.013)Å, r(Csp2-Cl) = 1.752(0.021)Å, r(Csp3-Cl) = 1.776(0.020)Å, ∠C-CC = 127.6(1.1)°, ∠Csp3-Csp2-Cl = 110.2(1.0), ∠Csp2-Csp3-Cl = 113.1(1.2)°, ∠H-Csp3-H = 109.5° (assumed), ∠CC-H = 120.0° (assumed) and ∠φ = 108.9(3.4)°. 相似文献
Bromoacetyl chloride and bromoacetyl bromide are studied by gas phase electron diffraction at nozzle-tip temperatures of 70°C and 77°C, respectively. Both compounds exist as mixtures of anti and gauche conformers. The mole fraction anti, with uncertainties estimated at 2σ, was found to be 0.474(0.080) for bromoacetyl chloride and 0.615(0.069) for bromoacetyl bromide. The results for the distance (ra)and angle (∠α) parameters, with parenthesized uncertainties of 2σ including estimated uncertainty in the electron wave length and correlation effects are as follows: (1) bromoacetyl chloride, r(C-H) = 1.086(0.062) Å, r(CO) = 1.188(0.009) Å, r(C-C) = 1.519(0.018) Å, r(C-Cl) = 1.789(0.011) Å, r(C-Br) = 1.935(0.012) Å, ∠C-CO = 127.6(1.3)°, ∠C-C-Cl = 111.3(1.1)°, ∠C-C-Br = 111.0(1.5)°, ∠H-C-H = 109.5°(assumed), /o (gauche torsion angle relative to 0° for the anti form) = 110.0°(assumed); (2) bromoacetyl bromide, r(C-H) =1.110(0.088) Å, r(C=O) = 1.175(0.013) Å, r(C-C) = 1.513(0.020) Å, r(CO-Br) = 1.987(0.020) Å, r(CH2-Br) = 1.915(0.020) Å, ∠C-CO = 129.4(1.7)°, ∠CH2-CO-Br = 110.7(1.5)°, ∠CO-CH2-Br = 111.7(1.8)°, ∠H-C-H = 109.5°(assumed), ∠ø (gauche torsion angle relative to 0° for the anti form) = 105.0°(assumed). The structural results are discussed in connection with the structures of related molecules. 相似文献
The molecular structure and conformation of cis-1,3-dichloro-1-propene have been determined by gas phase electron diffraction at a nozzle temperature of 90°C. The molecule exists in a form in which the chlorine atom of the methyl group and the carbon-carbon double bond are gauche to one another. The results for the distance (rg) and angle (∠α) parameters are: r(C-H) = 1.078(10)Å, r(CC) = 1.340(5)Å, r(C-C) = 1.508(7)Å, r( =C-Cl) = 1.762(3)Å, r(C-Cl) = 1.806(3)Å, ∠Cl-C-C = 111.7°(1.8), ∠(CC-C) = 125.5°(1.5), ∠Cl-CC = 124.6°(1.6) and ∠H-C-Cl = 111°(5). The torsion-sensitive distances close to the gauche form can be approximated using a dynamic model with a quartic double minimum potential function of the form V(Φ) = V0[1 + (4 - 2()2], where Vo = 1.1(8) kcal mol?1 and Φ0 = 56°(5) (Φ = 0 corresponds to the anti form). 相似文献
The molecular structures of gaseous tetrafluoro-p-benzoquinone (p-fluoranil) and tetramethyl-p-benzoquinone (duroquinone) have been investigated by electron diffraction. Except for the methyl group hydrogen atoms, the molecules are planar to within experimental error, but small deviations from planarity are completely compatible with the data. Values for the geometrical parameters (radistances and rα with parenthesized uncertainties of 2σ including estimated uncertainty in the electron wavelength and correlation effects, are as follows. Tetrafluoro-p-benzoquinone: D2h symmetry (assumed); r(C0) = 1.211(6) Å, r(CC) = 1.339(12) Å, r(C-C) = 1.489(5') Å, r(C-F) = 1.323(5) Å, ∠C-C-C = 116.8(7)° and ∠C-C-F = 116.1(7)°. Tetramethyl-p-benzoquinone: C2h symmetry (assumed);r(C-H) = 1.102(18) Å, r(CO) = 1.229(8) Å, r(CC) = 1.352(8) Å, r(Csp2-Csp2) = 1.491(11) Å, r(Csp2-Csp3) = 1.504(12) A, ∠C-CO-C = 120.8(8)°. ∠C-C-CH3 = 116.1(8)°, ∠C-C-H = 110.5(34)° and α1 = α2 (methyl torsion = 30° (assumed). 相似文献
The electron-diffraction data for gaseous oxepane, collected at 310 K, can be explained in terms of a 53:47% mixture of two twist-chair conformations. Using the nomenclature of Crerner and Pople [1], the conformations are characterised by q2 = 0.579 å, q3 = 0.685 Å, φ2 = 13.3°, φ3, = 63.0° and q2 = 0.511 Å. q3 = 0.588 Å, ø2 = 116.1°, ø3 = 217.6°. The other structural parameters (ra-structure) are rCO = 1.419 Å, rcc = 1.531 Å, rCH = 1.105 Å, ∠H-C-H = 106.0°, with a mean ring valency angle of 112-0° for the former conformation, and of 116.2° for the latter. There is a good agreement between the experimental geometries and the results from molecular mechanics calculations. 相似文献
The structure and conformation of dichloroacetyl chloride have been determined by gas-phase electron diffraction at nozzle temperatures of 20 and 119°C. The molecules exist as a mixture of two conformers with the hydrogen and oxygen atoms syn and gauche to each other. The composition (mole fraction of syn form) of the vapor was found to be 0.72 ± 0.06 and 0.73 ± 0.12 at 20 and 119°C, respectively, corresponding to almost equal energy for the two forms. The results for the distance (rg), angle ∠α and r.m.s. amplitude (l) parameters obtained at the two temperatures are entirely consistent. At 20°C the more important parameters, with estimated uncertainties of 3σ are: r(C-H) = 1.062(0.049)Å, r(C0) = 1.189(0.003)Å, r(C-C) = 1.535(0.008)Å, r(CO-Cl) = 1.752 (0.009)Å, r(CHCl-Cl) = 1.771(0.004)Å, ∠C-CO = 123.3(1.3)°, ∠C-CO-Cl = 113.9 (5.9)°, ∠C-CHCl—Cl = 109.5(1.5)°, ∠C1-C-Cl = 111.7(0.5)°, ∠Cl-C-H = 108.0(1.5), φ1 (HCCO torsion angle in the syn conformer) = 0.0° (assumed), φ2 (HCCO torsion angle in the gauche conformer) = 138.2(5.1)°. 相似文献
The equilibrium molecular structure and conformation of 1,5-diazabicyclo[3.1.0]hexane (DABH) has been studied by the gas-phase electron-diffraction method at 20 degrees C and quantum-chemical calculations. Three possible conformations of DABH were considered: boat, chair, and twist. According to the experimental and theoretical results, DABH exists exclusively as a boat conformation of C s symmetry at the temperature of the experiment. The MP2 calculations predict the stable chair and twist conformations to be 3.8 and 49.5 kcal mol(-1) above the boat form, respectively. The most important semi-experimental geometrical parameters of DABH (r(e), A and angle)e), deg) are (N1-N5) = 1.506(13), (N1-C6) = 1.442(2), (N1-C2) = 1.469(4), (C2-C3) = 1.524(7), (C6-N1-C2) = 114.8(8), (N5-N1-C2) = 107.7(4), (N1-C2-C3) = 106.5(9), and (C2-C3-C4) = 104.0(10). The natural bond orbital (NBO) analysis has shown that the most important stabilization factor in the boat conformation is the n(N) --> sigma*(C-C) anomeric effect. The geometry calculations and NBO analysis have been performed also for the bicyclohexane molecule. 相似文献
The molecular structure of norbornene has been investigated in the gas phase by combining electron diffraction data with microwave spectroscopic rotational constants. The interatomic distances (rg) and bond angles were obtained by applying a least squares program to the refined experimental molecular diffraction intensities. The CC bond length was found to be 1.336 ± 0.002 Å while the ) bond length was 1. 529 ± 0.007 Å. Other bond lengths and angles included (IUPAC numbering system was used for norbornene): C1-C6 = 1.550 ± 0.020 Å, C1-C7 = 1.566± 0.005 Å, C5-C6 = 1.556 ± 0.005 Å, C-Have. = 1.103 ± 0.003 Å, ∠C1C2C4 = 95.3°. The dihedral angle between planes C1C2C3C4 and C1C6C5C4 is 110.8 ± 1.5° while that between C1C2C3C4 and C1C7C4 is 122.3°. The moments of inertia calculated from ED structure are in good agreement with microwave spectroscopic values. 相似文献
The structure of acetyl cyanide has been determined by making joint use of the electron diffraction intensities measured in the present study and the rotational constants reported by Krisher and Wilson. The thermal average bond distances are: rg(C-H) = 1.116±0.011 Å, rg(CN) = 1.167±0.010 Å, rg(C=O) = 1.208±0.009 Å, rg(=C-C) = 1.477±0.008 Å and rg(C-Cmethyl) = 1.518±0.009 Å. The bond angles in the zero-point average structure (rav) are: (Cmethyl-C=O) = 124.6±0.7°, (C-C-C) = 114.2±0.9°, (C-CN) = 179.2±2.2° and (H-C-H) = 109.2±0.7°. The uncertainties represent the estimated limits of experimental error. The C-C single bond placed between the double and triple bonds is longer than those in vinylacetylene, acrylonitrile and propynal. Other structural parameters are also compared with those in related molecules. The infrared and Raman spectra of this molecule have been measured, and Urey-Bradley force constants have been determined. 相似文献
The molecular structure of COBr2 has been determined as follows by an analysis of electron diffraction intensity: rg(CO) = 1.178 ± 0.009 Å, rg(C-Br) = 1.923 ± 0.005 Å and θ°α(Br-C-Br) = 112.3 ± 0.4°. The uncertainties represent estimated limits of error. The observed systematic trends in the bond lengths and bond angles in carbonyl and thiocarbonyl halides are discussed. 相似文献
Dichlorotetramethyldisiloxane is studied by gas-phase electron diffraction at room temperature. The least-squares values of the bond distances (rg) and bond angles () are: r(C---H)=1.084(5) Å, r(Si---O) = 1.624(2) Å, r(Si---C) = 1.852(2) Å, r(Si---Cl) = 2.067(2) Å, SiOSi = 154.0° (1.5), ClSiO = 110.2° (0.8), ClSiC = 109.6°(0.7), HCSi = 111.7°(1.5), OSiC = 110.0°(0.8), τ1 (zero corresponds to the Si---Cl bond trans to the Si---O---Si linkage) = 78°(6) and τ2 = 141°(19). A two-conformer model cannot be ruled out. 相似文献
The molecular structure of 1,1,2,2-tetrabromodisilane has been investigated using gas-phase electron diffraction data obtained at 110°C. At this temperature the molecules exist as a mixture of about equal parts (X = 0.5 ±0.2) of the two conformers with the H---Si---Si---H torsion angle equal to 180° (anti) or 60° (gauche). Assuming that the two conformers differ in their geometries only in the torsion angle φ, some of the important distance (ra) and angle () parameters are: r(Si---Si) = 2.349(19) Å, r(Si---Br) = 2.205(5) Å, r(Si---H) = 1.485 Å (assumed), Br---Si---Br = 110.1(1.6)°, Si---Si---Br = 107.1(1.2)° Si---Si---H = 108.6° (assumed). The error limits are 2σ. The observed conformational composition (Xanti = 0.5(0.2)) corresponds to an energy difference between the conformers of ΔE = E(gauche) — E(anti) = 0.5 ± 0.6 kcal mol−1, assuming ΔS = Rln2. 相似文献
Vapor-phase molecules of C5H5As were found, assuming C2v symmetry, to have the following structure parameters and uncertainties (2.5σ): rg(C-As)= 1.850 ± 0.003 Å, rg(C2–C3) = 1.390 ± 0.032 /rA, rg(C3–C4) = 1.401 ± 0.032 /rA, rg(C-Cave) = 1.3954 ± 0.002 Å, ∠CAsC = 97.3 ± 1.7°, ∠AsCC = 125.1 ± 2.8°, and ∠C3C3C4 = 124.2 ± 2.9°. Amplitudes of vibration were also determined. Auxiliary information is more restrictive than pure electron diffraction intensities as evidence that the molecule is rigorously planar. Structural characteristics of arsabenzene reinforce prior indications that the heterocyclic molecule is genuinely aromatic. 相似文献