首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
A compacted size high power CO2 laser has been developed using an acousto-optically (AO) Q-switch. Performance characteristics have been investigated as a function of output mirror transmittance. The theory of six-temperature model for CO2 lasers has firstly been utilized to analyze the dynamical process in the AO Q-switched CO2 laser. This theory perfectly explains the behavior of energy transfer between different molecules in laser gain medium, and describes the shape of pulse laser. The calculated pulse waveforms are in good agreement with the experimental result. Both the experimental and theoretical results present that the optimal value of output mirror transmittance is 39%. Under this condition, the measured peak power is 4750 W and pulsed width is 160 ns, which is consistent with the calculations. Six-temperature model is a perfect theory for CO2 laser kinetics, which will lay a theoretical foundation for the laser optimum design.  相似文献   

2.
A D2O laser has been developed for collective Thomson scattering measurements of ion temperature in high temperature plasmas. A pulse duration and a spectral width of a high power D2O laser has been successfully controlled for this purpose, by using a TEA CO2 laser injection-locked by an etalon-tuned TEA CO2 laser as a pump source.  相似文献   

3.
Plane-polarized CO2 laser beams can be successfully employed in controlled surface temperature laser heat treating in order to improve the coupling between radiation and steel. The coupling efficiency has been quantitatively determined by means of a simple energy balance model, by using a medium-power CO2 laser. In this way, the angle at which the best coupling can be obtained has also been singled out. Moreover, some heat treatments performed with a high power laser beam obliquely impinging on medium carbon steel samples have confirmed that controlled surface temperature laser heat treating can be completely free of the problems concerning the use of coatings generally employed.  相似文献   

4.
We have posed the design of a time-integral type laser energy meter based on anisotropic Seebeck effect for the first time. Anisotropic Seebeck effect is responsible for the laser-induced thermoelectric voltage effect in high temperature superconductor (HTSC) cuprates and colossal magnetoresistance (CMR) manganites thin films grown on tilted single crystal substrates. In this study, for an example, an epitaxial La2/3Ca1/3MnO3 thin film prepared on a tilted LaAlO3 substrate by standard pulsed-laser deposition (PLD) method is tested with a 1064-nm Q-switched Nd:YAG laser and its 2nd (532 nm), 3rd (355 nm), and 4th (266 nm) harmonics from room temperature to 16 K. The integral of the voltage signal with time shows a good linear relation with the laser energy per pulse in the measured wavelength and temperature range, which confirms the theoretical analysis given in this letter and can be used to design a time-integral type laser energy meter. The sensitivity increases as the film thickness increases or as the thermal diffusion constant decreases, which makes the time-integral type laser energy meter low cost as compared with the peak-voltage type. It operates with fast (nanosecond range) and broad-spectrum (from infrared to ultraviolet) response in wide temperature range (from room temperature to 10s K), and can be useful replacements for pyroelectric power/energy meters.  相似文献   

5.
A prototype laser energy/power meter was designed based on the anisotropic Seebeck effect of LaCaMnO3 thin film grown on vicinal cut LaAlO3 substrate. The optical response of this device to the pulsed laser and the chopped CW laser was measured from infrared to ultraviolet. The peak voltage of the measured signal shows a good linear relation to the laser energy and power in the measured range. It was shown that at 1064 nm wavelength, this prototype device demonstrates higher sensitivity than that of commercial device.  相似文献   

6.
The automation of CO2 laser output power measurement is discussed in this paper as a function of the absorber gas pressure in a cell located inside or outside the laser cavity. A manually tunable laser was used which can be operated in one of about 44 different laser lines aligned by the user and registered respectively by the acquisition program for further analysis.The voltages representing the absorber gas pressure and the output power were very small (a few hundred μV), therefore a proper voltage amplification circuit was designed to amplify the analog outputs of both the pressure meter and the laser output power meter. These amplified signals were then applied directly to a PCI-9112 ADLINK data acquisition card using a personal computer (PC).A suitable controlling program using LabVIEW graphical programming language was written to measure the pressure and laser power signals, draw the relationship between them and save the results for later processing and analysis; such as, gas absorbance coefficient α, mean absorption cross section σ calculations that can be applied in many areas such as molecular spectroscopy and environmental pollution studies.  相似文献   

7.
It was shown both theoretically and experimentally that nanosecond order laser pulses at 10.6 micron wavelength were superior for driving the Sn plasma extreme ultraviolet (EUV) source for nano-lithography for the reasons of higher conversion efficiency, lower production of debris and higher average power levels obtainable in CO2 media without serious problems of beam distortions and nonlinear effects occurring in competing solid-state lasers at high intensities. The renewed interest in such pulse format, wavelength, repetition rates in excess of 50 kHz and average power levels in excess of 18 kiloWatt has sparked new opportunities for a matured multi-kiloWatt CO2 laser technology. The power demand of EUV source could be only satisfied by a Master-Oscillator-Power-Amplifier system configuration, leading to a development of a new type of hybrid pulsed CO2 laser employing a whole spectrum of CO2 technology, such as fast flow systems and diffusion-cooled planar waveguide lasers, and relatively recent quantum cascade lasers. In this paper we review briefly the history of relevant pulsed CO2 laser technology and the requirements for multi-kiloWatt CO2 laser, intended for the laser-produced plasma EUV source, and present our recent advances, such as novel solid-state seeded master oscillator and efficient multi-pass amplifiers built on planar waveguide CO2 lasers.  相似文献   

8.
A microprocessor-based algorithm was developed to control the power supply to a CO2 laser using an AC-chopper method. This system was connected directly to a CO2 laser tube without the need for a dc-dc converter or the storage capacitance of a multilevel circuit. The typical CO2 laser power supply system had a full-bridge series resonant inverter or voltage multiplier. AC-to-AC converter schemes using zero voltage switching (ZVS) can be used efficiently and economically for low and medium power applications.This paper reports the performance characteristics of a symmetrical AC-chopper technology that can maintain the quality of the ac output of a CO2 laser tube, regardless of the amount of switching loss. The laser was operated to an output power, maximum system efficiency total gas mixture of 37.2 W, 92%, and CO2:N2:He=1:9:15, respectively. The laser system, AC-chopper power supply and its operation were examined.  相似文献   

9.
A single-discharge self-sustained CO2 laser has been constructed with a gap distance of 5 cm. The system has a very simple construction; it produces a very uniform discharge with an output power of 50 Joules per liter for a CO2 : N2 : He = 1 : 1 : 3 mixture. The efficiency can be as high as 19%.  相似文献   

10.
Madan Lal  R K Choudhury 《Pramana》1988,30(5):L463-L467
We present here a method for rapidly monitoring the composition of samples deposited on a substrate. This was applied to the case of superconducting material YBa2Cu3O7 deposited by laser evaporation on quartz plates. The aim of this study was to achieve the right composition of the deposited material so as to have it superconducting at high temperatures. The monitoring was done by comparing the X-ray spectrum obtained by EDXRF technique of the deposited film with the spectrum of the original superconducting material. By this method of signature analysis it was possible to arrive at the laser beam parameters which give the elemental composition of the deposited material almost as same as that of the original material. The optimization was done by changing the laser power and pulse width and monitoring the X-ray fluorescence spectra as a function of the beam parameters.  相似文献   

11.
A transverse flow, transverse discharge cw CO2 laser in which de discharge is sustained by employing high repetition rate high voltage pulses has been developed. Pulser sustained discharge through electrodes of innovative design provided uniform excitation at electrical input power densities more than 10 W/cc. Laser output power more than 2.5 kW was obtained in a laser gas mixture consisting of 0.5 mbar of CO2, 16 mbar of N2 and 38.5 mbar of He. Design details and operational characteristics of this laser are presented.  相似文献   

12.
Yi Qiu  Yude Li  Guoying Feng  Yonggen Xu 《Optik》2012,123(1):91-93
The experimental proof of the light output on the two-cone axisymmetric-folded combination (ASFC) CO2 laser has been performed. The output power from the centre discharge tube is 26.7 W, and that of one couple of folded discharge tubes is 40.5 W. Seventeen beams can be obtained from the device, which are from the folded cavities with axes placed in the inner and outer cones, respectively. Therefore, the ASFC CO2 laser with more discharge tubes can be fabricated and much higher output power can be obtained.  相似文献   

13.
This paper presents a heat transfer model to calculate the temperature field in moving glass rods heated by a CO2 laser. Conduction and radiation heat transfer in radial and axial directions are taken into account in the current model. The Rosseland diffusion approximation is incorporated to analyze the radiation heat transfer in the glass rod. A two-band model is used to simulate the spectral property of the glass. Results of the simulation show that glass rods of sufficiently large optical thickness should be treated as a semitransparent medium for radiative transfer, and it is reasonably accurate to assume it to be opaque to CO2 laser irradiation. It has been shown that the resulting temperature profile is strongly dependent on the laser parameters, i.e., the size of laser beam and the power of the laser. The diameter and speed of the moving glass rod are also important in determining the temperature field although the convective heat transfer coefficient between the glass rod and the environment has little effect.  相似文献   

14.
A new formula is obtained for estimating the output power of fast-flow CO2 lasers. It is shown that a higher specific output power of these CO2 lasers in comparison with sealed-off CO2 lasers is caused mainly by the higher saturation intensity of the former. It is concluded that the temperature of the laser active medium affects almost only the charge stability and that, under stable discharge conditions, the same output power can be obtained at different temperatures of the active medium.  相似文献   

15.
Since the energy density of high energy laser can be extremely high and destructive, it is difficult to directly measure the laser energy with custom methods. A volume absorption method directly using water as absorption substance is introduced. In the energy meter, water is pumped into an absorption cavity sealed by a quartz window, and energy increment of water by laser is calculated. The new energy meter has excellent power and energy linearity and is almost not affected by power, energy and flow, its relative deviation to norm middle-power energy meter is 1.9 %, which infers that the new energy meter can measure higher laser energy and maintain higher precision as well.  相似文献   

16.
To realize a CO2 laser using a fast-axial-flow high-output-power microwave discharge excitation, we devised a technology for making the microwave discharge uniform by varying the oscillation direction of an electric field with time. We also verified the effectiveness of this technology. As a result, we succeeded in increasing the discharge uniformity to 70% of the laser-tube cross-sectional area and realized a high laser output power and a high laser efficiency. In the case of a microwave input power of 1450 W, a maximum laser output power of 273 W and a laser efficiency of 18.8% were achieved; in the case of a microwave input power of 1070 W, a laser output power of 214 W and a laser efficiency of 20.0% were achieved. At the time of maximum output power, a high input power density of 280 W/cm3, which is approximately 20 times that in a dc discharge method, was achieved. Thus, a high-output-power microwave-discharge-excited CO2 laser has become feasible. PACS 42.60.By; 52.80.Pi  相似文献   

17.
Lasers for materials processing: specifications and trends   总被引:2,自引:0,他引:2  
An overview is given of the types of lasers dominating the field of laser materials processing. The most prominent lasers in this field are the CO2 and the Nd: YAG laser. The domain of CO2 lasers is applications which demand high laser powers (up to 30 kW are available at present), whereas the domain of Nd:YAG lasers is micro-machining applications. In the kilowatt range of laser output power, the two types of lasers are in competition. New diffusion-cooled CO2 laser systems are capable of output laser powers of several kilowatts, with good beam qualities, while still being quite compact. The output power and beam quality of Nd:YAG lasers has been improved in recent years, so that Nd:YAG lasers are now an alternative to CO2 lasers even in the kilowatt range. This is especially true for applications that demand optical fibre transmission of the laser beam, which is possible with Nd:YAG laser light but not with the longerwavelength light emitted by CO2 lasers. The main problem in solid-state lasers such as Nd:YAG is the thermal lensing effect and damage due to thermal stresses. In order to reduce thermal loading, cooling has to be enhanced. Several alternative geometries have been proposed to reduce thermal loading and, by this, thermal lensing effects. There are now slab and tube geometries which allow much higher output powers than the conventionally used laser rods. A very new scheme proposes a thin slab whose cooled side is also used as one of the laser mirrors, so that thermal gradients occur mainly in the direction of the beam propagation and not perpendicular to it, as is the case in the other geometries. As well as CO2 and Nd:YAG lasers, semiconductor laser diodes are very promising for direct use of the emitted light or as pump sources for Nd:YAG and other solid-state lasers. When packaging together thousands of single laser diodes, output powers of several kilowatts can be realized. Major problems are collimation of the highly divergent laser beams and cooling of the laser diode bars.  相似文献   

18.
By replacing the conventional (non line-selective) unstable resonator, we succeeded in developing the very high power line-selective (line-tunable) CO2 laser as a pumping source for high power molecular gas (e.g.NH3) lasers in the infrared and far-infrared regions.The experiments were performed by using the very high power CO2 laser (4A unit of Lekko VIII) at The Institute of Laser Engineering, Osaka University.The output power of 9R(30)9.22µ m line from the developed CO2 laser, for instance, exceeded 0.5GW/pulse (50J/pulse with pulse width of 100nsec).  相似文献   

19.
Transverse flow transversely excited (TFTE) CO2 lasers are easily scalable to multikilowatt level. The laser power can be scaled up by increasing the volumetric gas flow and discharge volume. It was observed in a TFTE CW CO2 laser having single row of pins as an anode and tubular cathode that the laser power was not increasing when the discharge volume and the gas volumetric flow were increased by increasing the electrode separation keeping the gas flow velocity constant. The discharge voltage too remained almost constant with the change of electrode separation at the same gas flow velocity. This necessitated revision of the scaling laws for designing this type of high power CO2 laser. Experimental results of laser performance for different electrode separations are discussed and the modifications in the scaling laws are presented.  相似文献   

20.
An ir CO2, dc current pumped, optical waveguide (WG) amplifier has been built, and its active medium optical parameters measured for several CO2 emission lines, and their dependence from active medium total pressure, discharge current and temperature was investigated.High gain is found which, coupled with relatively high saturation power in the WG fundamental mode and ease of fabrication with this technology in long (up to 1.5 m) lengths, indicates promising use to efficiently amplify high spectral and spatial purity output of a short, highly tunable WG laser up to power levels suited for nonlinear spectroscopy and optical pumping. The dependence of the small signal gain coefficient and of the saturation parameter for individual rotational lines on the radiation intensity was computed using experimentally known parameters of the discharge plasma. The computation was carried out using the two mode rate equation approach for CO2–N2–He gas mixtures. A satisfactory agreement between theoretical and experimental results was obtained.Work supported by G.N.S.M.-C.N.R. and M.P.I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号