首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Using a relative rate method, rate constants for the gas-phase reactions of the NO3 radical with methacrolein and methyl vinyl ketone were determined to be (4.4 ± 1.7) × 10−15 cm3 molecule−1 s−1 and <6 × 10−16 cm3 molecule−1 s−1, respectively, at 296 ± 2 K. The molar formation yields of methacrolein and methyl vinyl ketone from the gas-phase reaction of the NO3 radical with isoprene at 296 ± 2 K and atmospheric pressure of air were measured to be 0.035 ± 0.014 each. The tropospheric implications of these kinetic and product data are discussed, and it is concluded that the nighttime NO3 radical reactions with methacrolein and methyl vinyl ketone are not important. However, during nighttime the formation of methacrolein and methyl vinyl ketone from the reaction of isoprene with the NO3 radical may dominate over their formation from the O3 reaction with isoprene. Atmospheric pressure ionization tandem mass spectrometry (API-MS/MS) was used to investigate the products of the reactions of the NO3 radical with isoprene and isoprene-d8, and C5-nitrooxycarbonyl(s) (e.g., O2NOCH2C(CH3) (DOUBLEBOND) CHCHO), C5-hydroxynitrate(s) (e.g., O2NOCH2C(CH3)(DOUBLEBOND) CHCH2OH), C5-nitrooxyhydroperoxide(s) (e.g., O2NOCH2C(CH3)(DOUBLEBOND) CHCH2OOH), and C5-hydroxycarbonyl(s) (e.g., HOCH2CH(DOUBLEBOND) C(CH3)CHO) and their deuterated analogs were observed from these reactions. © 1996 John Wiley & Sons, Inc.  相似文献   

2.
Investigation of the formation of complex reaction products in the gas-phase system O3/NO2/(Z)-2-butene by combination of linear reactors with IR. matrix and microwave Stark Spectroscopy is reported. Besides the polyatomic products observed earlier in the gas-phase ozonolysis of (Z)-2-butene, the following products were identified; N2O5, HNO3, HNO4, CH3NO2, CH3ONO, CH3COONO2 and CH3COO2NO2 (peroxyacetyl nitrate, PAN). Matrix IR. spectra of N2O5, HNO3. CH3COONO, CH3COONO2 required for reference purposes are presented. It is shown that PAN-formation occurs already in the absence of light. A reaction scheme is proposed for explanation of the observed complex NOx-containing products, which assumes methyldioxirane as a central intermediate. Particular reaction steps of the scheme will be discussed, including thermochemical estimates of reaction enthalpies.  相似文献   

3.
《Chemical physics letters》1987,140(5):451-457
Product studies using FTIR absorption spectrometry have been performed in a 420 xxx reaction chamber on the 254 nm photolysis of mixtures containing CH3SSCH3 and NO2 at ppm concentrations in 760 Torr of O2/N2 diluent. The results indicate that the CH3S radicals formed by photolysis of CH3SSCH3 react primarily with NO2, forming CH3SO and NO. In the presence of O2 an unstable intermediate whose IR absorption spectrum resembles a peroxynitrate compound is observed. The intermediate has been tentatively assigned to methyl sulfinyl peroxynitrate, CH3S(O)OONO2. Other products include SO2, CH3SNO, CH3SNO2, CH3NO3, CH3SO3H, and HCHO.  相似文献   

4.
The mechanism of the reaction between the methylsulfonyl radical, CH3S(O)2, and NO2 is examined using density functional theory and ab initio calculations. Two stable association intermediates, CH3SNO2 and CH3S(O)ONO, may be formed through the attack of the nitrogen or the oxygen atom of NO2 radical to the S atom. Interisomerization and decomposition of these intermediates are investigated using high level energy methods and specifically, CCSD(T), CBS‐QB3, and G3//B3LYP. The computational investigation indicates that the lowest energy reaction pathway leads to the products CH3S(O)3 + NO, through the decomposition of the most stable association adduct CH3S(O)ONO. This result fully supports the relevant assumption of Ray et al. (Ray et al., J. Phys. Chem. 1996, 100, 8895], on which the experimental evaluation of the rate constant was based, namely that CH3S(O)3 + NO are the most probable products of the reaction CH3S(O)2 + NO2. © 2014 Wiley Periodicals, Inc.  相似文献   

5.
Photodecomposition of dimethylnitrosamine in the gas phase ( ~ 1 Torr) has been investigated following irradiation into the S1 (nπ*) ← S0 (363.5 nm) and S2 (ππ*) ← S0 (248.1 nm) transitions at room temperature. With a quantum yield of unity, excitation into the S1 state yields the fragments (CH3)2N? and NO which then recombine leaving no photoproducts. The addition of O2 results in only one photoproduct, (CH3)2NNO2. Irradiating into the S2 state, the products CH2?N? CH3, (CH2?N? CH3)3, CH2?NOH, N2O, NO, H2, and N2 were identified by capillary gas chromatography mass spectrometry. In the presence of N2 as a buffer gas the photoproducts are only CH2?N? CH3, (CH2?N? CH3)3, N2O, and H2. For both excitation conditions a mechanism is proposed involving cleavage of the N, N-bond as the main primary photolytic process.  相似文献   

6.
Rate data are reported for the reactions of a series of X‐phenyl 2,4,6‐trinitrophenyl ethers 1a–e [X = H, 4‐NO2, 2‐NO2, 2,4‐(NO2)2, or 2,6‐(NO2)2] with substituted anilines 2a–e [Y = H, 2‐CH3, 2,4‐(CH3)2, 2,6‐(CH3)2, or N‐CH3] in acetonitrile as solvent. For individual amine, kinetic data show that there is little steric hindrance to attack at the 1‐position of the parent molecules, even in the presence of di‐ortho substitution. With each substrate, however, there is evidence for significant steric interactions; such effects leading to rate retardation were very severe for 2,6‐dimethylaniline 2d (2,6‐(CH3)2) and N‐methylaniline 2e (Y = N‐CH3), the deactivating effect of N‐CH3 in most cases is slightly higher than that of 2,6‐(CH3)2. However, the reactions with 2e are base catalyzed whereas those of 2d are not. The corresponding reactions with aniline 2a (Y = H) and mono‐ortho methyl‐substituted aniline 2b (Y = CH3) are wholly base catalyzed. Only with the dinitro substrates, an uncatalyzed reaction is observed and when X = 2,6‐(NO2)2 this pathway takes all the reaction flux. A rationale is provided for the dichotomy of amine effects observed in this investigation. © 2009 Wiley Periodicals, Inc. Int J Chem Kinet 42: 37–49, 2010  相似文献   

7.
In attempts to obtain kinetic and mechanistic data required for an assessment of atmospheric fate of alternative halocarbons containing a CF3 group, reactions of the key free radical intermediates CF3OO and CF3O with several atmospheric compounds (i.e., NO, NO2, alkanes and alkenes) have been studied at 297 ± 2 K in 700 torr of air. Experiments employed the long path-FTIR spectroscopic method for product analysis and the visible (400 nm) photolysis of CF3NO → CF3 + NO as a source for the precursor radical CF3. Numerous labile and stable F-containing molecular products have been characterized based on kinetic and spectroscopic data obtained at sufficiently short photolysis time (≤1 min) to minimize heterogeneous decay on the reactor walls. Major new findings have been made for the reactions involving CF3O radicals. The behavior of CF3O radicals has been shown to be markedly different from that of CH3O radicals, i.e., (1) O2-reaction: no evidence for the F-atom transfer reaction CF3O + O2 → CF2 O + FOO; (2) NO-reaction: addition reaction CH3O + NO (+M) → CH3ONO (+M), but F-transfer reaction CF3O + NO → CF2O + FNO; (3) NO2-reaction: addition reaction for both radicals, but F-transfer reaction CF3 + NO2 → CF2O + FNO2 to a minor extent; (4) alkane-reaction: much faster H-abstraction by CF3O, comparable to HO; (5) alkene-reaction: much faster addition reaction of CF3O, comparable to HO. These results are summarized in this paper.  相似文献   

8.
A 480 L evacuable reaction chamber, equipped with FT-IR spectroscopy on-line and ion chromatography off-line, has been used to study the gas phase reaction between the nitrate radical, NO3, and the reduced organic sulphur compounds CH3CH2SH, (CH3CH2)2S, (CH3CH2)2S2, and CH3CH2SCH3 in air. The products CH3CH2SO3H, SO2, H2SO4, CH3CHO, and CH3CH2ONO2 were identified and quantified in the reactions of the first three compounds, CH3CH2SH, (CH3CH2)2S, and (CH3CH2)2S2. The reaction products were CH3CH2SO3H, CH3SO3H, SO2, H2SO4, CH3CHO, and CH2O in the reaction of CH3CH2SCH3. On the basis of identified reaction products and intermediates observed in the infrared spectra, mechanisms are proposed for the reactions between the NO3 radical and the four reduced organic sulphur compounds. The results of this study, together with those from previous experiments performed in this laboratory on CH3SCH3, CH3SH, and CH3SSCH3 lead to the conclusion that all these species, in the reaction with the NO3 radical, follow a similar degradation mechanism producing SO2, H2SO4, R? SO3H, R? CHO, and R? CH2ONO2, as the main reaction products. The inital step of the reaction of NO3 with R? S? R and R? S? H type (R = CH3, CH2CH3) reduced organic sulphur compounds was found to be H-atom abstraction, probably after the formation of an initial adduct. For the reaction between NO3 and R? S? S? R type compounds, evidence for an addition-decomposition reaction, as the initial steps, was obtained. R? S·, R? S(O)·, and R? S(O)2· appear to be formed as intermediates in all the reactions. © John Wiley & Sons, Inc.  相似文献   

9.
Four nitrated N‐confused free‐base tetraarylporphyrins were synthesized and characterized by electrochemistry and spectroelectrochemistry in nonaqueous media. The examined compounds are represented as NO2(Ar)4NcpH2, where NO2(Ar)4Ncp is the dianion of a tetraaryl N‐confused porphyrin with an inner carbon bound NO2 group and Ar is a p‐CH3OPh, p‐CH3Ph, Ph or p‐ClPh substituent on each meso‐position of the macrocycle. UV/Vis spectra and NMR spectroscopy data indicate that the same form of the porphyrin exists in CH2Cl2 and DMF which is unlike the case of non‐NO2 N‐confused porphyrins. The Soret band of NO2(Ar)4NcpH2 exhibits a 30–36 nm red‐shift in CH2Cl2 and DMF as compared to the spectrum of the non‐NO2 N‐confused porphyrins. The first two reductions and first oxidation of NO2(Ar)4NcpH2 are reversible in CH2Cl2 containing 0.1 M TBAP. The measured HOMO–LUMO gap averages 1.65 V in CH2Cl2 and 1.53 V in DMF, with both values being similar to those of the non‐NO2 substituted compounds. The nitro group on the inverted pyrrole is itself not reduced within the negative potential limit of CH2Cl2 or DMF, but its presence significantly affects both the UV/Vis spectra and redox potentials.  相似文献   

10.
Nitromethane is the only presently known organic solvent for highly reactive selenium trioxide (SeO3)4. The stability of the solutions is limited and the beginning of the reaction between both components depends significantly on concentration and temperature. The nitromethane solvate of cyclic triselenium heptoxide Se3O7 · CH3NO2 is the major solid product at the temperature 20–30°C and concentration range 3–20% SeO3. Crystal and molecular structure of this compound was determined by X-ray structure analysis and vibrational spectroscopy. The solvating molecule CH3NO2 is removable from Se3O7 · CH3NO2 in vacuo. If reaction temperature does not exceed 10°C, selenium pentoxide (Se2O5)n is formed instead of Se3O7 · CH3NO2. Dinitrosyl triselenate (NO)2Se3O10, nitrosyl hydrogendiselenate NOHSe2O7, nitrosyl hydrogenselenate NOHSeO4, nitrosyl hydrogenselenatoselenite NOHSe2O6 and selenium dioxide (SeO2)n were further identified in the solid reaction products. The selenic and/or oligoselenic acids remains in the nitromethane solution. CO2 and N2O3 were found as gaseous products.  相似文献   

11.
Synthesis of Fluoro-λ5-monophosphazenes and Fluoro-1,3-diaza-2λ5,4λ5-diphosphetidines by Means of the Staudinger Reaction 35 Tetrafluoro- and 2 difluorodiaza-diphosphetidines as well as 4 difluoro- and 30 monofluoro-λ5-monophosphazenes were prepared by the Staudinger reaction between tervalent phosphorus fluorides, RnPF3?n (n = 1, 2; R = R2N, (CH2)5N, O(CH2)4N, RO, (CH2O)2, alkyl, aryl) and phenylazides, X? C6H4N3 (X = H, 4-CH3, 4-Cl, 4-Br, 4-NO2, 3-NO2). PF3 does not react with phenylazide The influence of substituents on the structure of the reaction products is discussed. Kinetic measurements allowed to determine the constants λPI of the substituents (CH2)5N, O(CH2)4N and R(C6H5)N (R = CH3, C2H5, n-C4H9).  相似文献   

12.
The rate constant for the CF3 + NO2 reaction (k2) was measured at room temperature in the range of total pressures 300–600 torr. The measurements were performed using the ruby-laser-induced pulsed photodissociation of CF3NO in the presence of NO and NO2 in combination with time-resolved detection of the absorption of He(SINGLE BOND)Ne laser radiation by CF3NO. The use of the CF3 + NO reaction as a reference gives k2 = (3.2 ± 0.7) × 10−11 cm3/s. Analysis of the end products of the CF3 + NO2 reaction shows that the contribution of the association reaction channel, which leads to the formation of CF3NO2, is rather significant (about 30% total yield). A reaction mechanism is suggested to account for the products observed. © 1997 John Wiley & Sons, Inc. Int J Chem Kinet 29: 203–208, 1997.  相似文献   

13.
The introduction of the organosilicon substituent into the α‐position of an amino group results in cardinal change of the amine reactivity irrespective of the coordination state of silicon. Amines R2NCH2SiX3 [R = Me, Et, PhCH2, CH2SiX3; SiX3 = SiMe3, Si(OEt)3, Si(OCH2CH2)3N] easily react with AgNO3, to give the corresponding ammonium salts (R2NH+ CH2SiX3)·NO3?. At the same time, Ag(I) is reduced to Ag(0). The interaction of N‐methyl‐N,N‐bis(silatranylmethyl)amine with AgNO3 has been investigated by EPR spectroscopy. It was proven that the reaction involved a single electron transfer stage with the formation of cation radical of this amine. A mechanism of the reaction is proposed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
Thermal decomposition of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (HNIW, CL-20) and its oxa-analogs containing four and three nitramine fragments, in the gas phase and in solution predominantly follows the first order kinetics, whereas in the solid phase it proceeds with acceleration. Replacement of the two nitramine groups in the five-membered cycles of the molecule CL-20 by oxa groups practically does not affect the rate of decomposition of oxanitroderivatives in the solid phase. Substitution of the nitro group in one of oxa-nitroderivatives by R = H, NO, COCH3, CH2N(NO2)CH3 differently affects the rate of decomposition. For R = H the rate of decomposition increases; when R = COCH3, CH2N(NO2)CH3, it decreases; for R = NO, the rate of decomposition remains constant. For the studied compounds the activation parameters of thermal decomposition are determined in the solution, the gas phase, and the solid phase. In general, the reactivity of nitramines depends on the length of the weakest bond N-NO2, which is affected by the conformation of the nitro group.  相似文献   

15.
The reactions of the Mannich reagent Et3SiOCH2NMe2 ( 1 ) with a variety of anilines (mono-substituted RC6H4NH2, R=H, 4-CN, 4-NO2, 4-Ph, 4-Me, 4-MeO, 4-Me2N; di-substituted R2C6H3NH2, R2=3,5-(CH3)2, 3,5-(CF3)2; tri-substituted R3C6H2NH2, R3=3,5-Me2-4-Br and a “super bulky” aniline (Ar*NH2) [Ar*=2,6-bis(diphenylmethyl)-4-tert-butylphenyl]) led to the formation of a range of products dependent upon the substituent. With electron-withdrawing substituents, previously unknown diamines, RC6H4NH(CH2NMe2) [R=CN ( 2 a ), NO2 ( 2 b )] and R2C6H3NH(CH2NMe2) [R2=3,5-(CF3)2 ( 2 c) ] were formed. Further reaction of 2 a , b , c with 1 yielded the corresponding triamines RC6H4N(CH2NMe2)2 (R=CN ( 3 a ), NO2 ( 3 b ) and R2C6H3N(CH2NMe2)2, R2=3,5-(CF3)2 ( 3 c ). The new polyamines were characterized by NMR spectroscopy, and for 2 a , 2 c , and 3 c , by single crystal XRD. In the case of electron-donating groups, R=4-OMe, 4-NMe2, 4-Me, 3,5-Me2, 3,5-Me2-4-Br, and for R=4-Ph, the reactions with 1 immediately led to the formation of the related 1,3,5-triazines, R=4-MeO ( 5 a ), 4-Me2N ( 5 b ), 4-Me ( 5 c ), 3,5-Me2 ( 5 d ), 3,5-Me2-4-Br ( 5 e ), 4-Ph ( 5 f ), 4-Cl ( 5 g ). The “super bulky” aniline rapidly produced a single product, namely the corresponding imine Ar*N=CH2 ( 4 ) which was also characterized by single crystal XRD. Imine 4 is both thermally and oxidatively stable. All reactions are very fast, thus based upon the presence of Si we are tempted to denote the reactions of 1 as examples of “Silick” chemistry.  相似文献   

16.
Picosecond multiphoton ionization of (NO)mArn clusters produced in a supersonic expansion of NO/Ar gas mixtures has been studied using time-of-flight mass spectrometry. Two-photon ionization with 266 nm photons show that dilute gas mixtures (1% NO/Ar) yield clusters limited to m≤7, but with as many as 37 argon atoms. Magic numbers are observed for NO+Ar12, NO+Ar18, (NO) 2 + Ar17, NO+Ar22, and (NO) 2 + Ar21 and are understood in terms of solvation of the NO+ and (NO) 2 + by argon in icosahedral arrangements. Four-photon ionization with 532 nm light produces dissociation of the clusters to yield only NO+Arn with n up to 54. This distribution exhibits an additional magic number at n=54, consistent with the completion of a second solvation sphere about the NO+. The known wavelength dependence for photodissociation of (NO) 2 + and (NO) 3 + and comparison of MPI spectra obtained with 266, 355, and 532 nm light indicate that the dissociation is occurring in the cluster ions.  相似文献   

17.
Solvent-free Synthesis of Tetramethylammonium Salts: Synthesis and Characterization of [N(CH3)4]2[C2O4], [N(CH3)4][CO3CH3], [N(CH3)4][NO2], [N(CH3)4][CO2H], and [N(CH3)4][O2C(CH2)2CO2CH3] A general procedure to synthesize tetramethylammonium salts is presented. Several tetramethylammonium salts were prepared in a crystalline state by solvent-free reaction of trimethylamine and different methyl compounds at mild conditions: [N(CH3)4]2[C2O4] (cubic; a = 1 114.8(3) pm), [N(CH3)4][CO3CH3] (P21/n; a = 813.64(3), b = 953.36(3), c = 1 131.3(4) pm, β = 90.03(1)°), [N(CH3)4][NO2] (Pmmn; a = 821.2(4), b = 746.5(3), c = 551.5(2) pm), [N(CH3)4][CO2H] (Pmmn; a = 792.8(7), b = 791.7(3), c = 563.3(4) pm) and [N(CH3)4][O2C(CH2)2CO2CH3] (P21; a = 731.1(2), b = 826.4(3), c = 1 025.2(3) pm, β = 110.1(1)°). The tetramethylammonium salts were characterized by IR-spectroscopy and X-ray diffraction. The crystal structures of the methylcarbonate and the nitrite are described.  相似文献   

18.
Calculations using density functional theory were performed to explore the mechanisms for atmospheric degradation of isopropyl methyl methylphosphonate (IMMP). The potential energy surface profiles for OH‐initiated reaction of IMMP were constructed, and all possible degradation channels were considered. Rate constants were further calculated using transition state theory. It was established from these calculations that H‐abstractions from alkyl groups have much lower energy barriers than substitutions of alkoxyl groups, and four possible H‐abstraction channels are competitive. Investigations into the secondary reactions under the presence of O2/NO were also performed. It is shown that O2 addition, reaction of peroxide radicals with NO to form RO radicals, and removal of ·RO are the major degradation pathways for alkyl radicals. Four selected products, CH3OP(O)(CH3)OC(O)CH3, CH3OP(O)(O)CH3, (CH3)2CHOP(O)(CH3)OH, and (CH3)2CHOP(O)(CH3)OCH?O, are predicted to be the major products in this study. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
The kinetics of the acetaldehyde pyrolysis have been studied at temperatures from 450° to 525°C, at an acetaldehyde pressure of 176 torr and at 0 to 40 torr of added nitric oxide. The following products were identified and their rates of formation measured: CH4, H2, CO, CO2, C2H4, C2H6, H2O, C3H6, C2H5CHO, CH3COCH3, CH3COOCH?CH2, N2, N2O, HCN, CH3NCO, and C2H5NCO. Acetaldehyde vapor was found to react with nitric oxide slowly in the dark at room temperature, the products being H2O, CH3COOCH3, CO, CO2, N2, NO2, HCN, CH3NO2, and CH3ONO2. The rates of formation of N2 and C2H5NCO depend on how long the CH3CHO-NO mixture is kept at room temperature before pyrolysis; the rates of formation of the other products depend only slightly on the mixing period. The pyrolysis of “clean” CH3CHO–NO mixtures (i.e., the results extrapolated to zero mixing time, which are independent of products formed in the cold reaction) are interpreted as follows: (1) There are two chain carriers, CH3 and CH2CHO, their concentrations being interdependent and influenced by NO in different ways: the CH3 radical is both generated and removed by reactions directly involving NO, whereas CH2CHO is generated only indirectly from CH3 but is also removed by direct reaction with NO. (2) An important mode of initiation by NO is its addition to the carbonyl group with the formation of which is converted into ; this splits off OH with the formation of CH3NCO or CH3 + OCN. (3) Important modes of termination are The steady-state equations derived from the mechanism are shown to give a good fit to the experimental rate versus [NO] curves and, in particular, explain why there is enhancement of rate by NO at higher CH3CHO pressures and, at lower CH3CHO pressures, inhibition at low [NO] followed by enhancement at higher [NO]. The cold reaction is explained in terms of chain-propagating and chain-branching steps resulting from the addition of several NO molecules to CH3CHO and the CH3CO radical. In the “unclean” reaction it is found that the rates of N2 and C2N5NCO formation are increased by CH3NO2, CH3ONO, and CH3ONO2 formed during the cold reaction. A mechanism is proposed, involving the participation of α-nitrosoethyl nitrite, CH3CH(NO)ONO. It is suggested that there are two modes of behavior in pyrolyses in the presence of NO: (1) In the paraffins, ethers, and ketones, the effects are attributed to the addition of NO to a radical with the formation of an oxime-like compound. (2) In the aldehydes and alkenes, where there is a hydrogen atom attached to a double-bonded carbon atom, the behavior is explained in terms of addition of NO to the double bond followed by the formation of an oxime-like species.  相似文献   

20.
The thermal decomposition of nitropropane (CH3CH2CH2NO2) has been investigated at the CBS-QB3 level of theory. The pyrolysis of CH3CH2CH2NO2 mainly includes the simple bond ruptures mechanism, hydrogen abstraction processes, isomerization and secondary reactions. As a result, for the simple bond ruptures mechanism, the formation of \({\text{CH}}_{3} {\text{CH}}_{2} {\text{CH}}_{2}^{\cdot} +\,^{\cdot}{\text{NO}}_{2}\) products is dominant with the energy barrier of 49.77 kcal mol?1. The process of H atom on the β–CH2 abstracted by one O atom of NO2 moiety in CH3CH2CH2NO2(CH3CH2CH2NO2 → CH3CH=CH2 + HONO) needs to overcome lower energy barrier than that of the rate-determining step (one of H atom on the α-CH2 and γ-CH3 abstracted of reaction) of the other hydrogen abstraction reactions. Therefore, we predict that the corresponding alkenes and HONO are the main products in the hydrogen abstraction reaction of nitroparaffin. Besides, the channel of the CH3CH2CHO + HNO formations (CH3CH2C(α)H2NO2 → CH3CH2C(α)H2ONO → CH3CH2CHO + HNO), occurring through the H atom of C(α) abstracted by the N atom of NO2 moiety after the isomerization reaction from CH3CH2CH2NO2 to CH3CH2CH2ONO, is favorable in the isomerization secondary reactions. Rate constants and branching ratios are estimated by means of the conventional transition state theory with zero curvature tunneling over the temperature range of 400–1500 K. The calculation shows that the overall rate constant in the temperature of 400–1500 K is mainly dependent on the competitive channels of formations of CH3CH=CH2 + HONO and \({\text{CH}}_{3} {\text{CH}}_{2} {\text{CH}}_{2}^{\cdot} +\,^{\cdot}{\text{NO}}_{2}\) The three-parameter expression for the total rate constant is fitted to be k total = 1.74 × 10?13 T 8.20exp(17038.7/T) (s?1) between 400 and 1500 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号