首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adding an artificial bolaamphiphile to a dispersion of giant multilamellar vesicles (GMVs) made of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) induced a cup-shaped deformation in GMVs accompanied by partial extrusion of the inner vesicle; thereafter, the deformed vesicles returned to their original shape. On the other hand, when the artificial bolaamphiphile together with a surfactant was added to the vesicular dispersion, these deformation and reformation dynamics were transmitted from the outer membranes in GMVs to the inner membranes until an intact inner vesicle was extruded out of the outer membrane. The microscopic aspects of these processes were investigated using amphiphiles tagged with individual fluorophores.  相似文献   

2.
The synthesis, cation binding and transmembrane conductive properties of a novel group of synthetic ion channels containing a redox-active centre are described. Experiments using a black lipid membrane preparation revealed that these compounds function effectively as ion channels. Subsequent 23Na NMR spectroscopy studies focused on a synthesized ion channel with a ferrocene centre. When incorporated in vesicular bilayers, this channel was demonstrated to support a Na+ flux that was at least six times faster than ion transport by monensin. Since oxidation of the ferrocene moiety completely inhibited the Na+ transport, the redox-active centre provides a potential mechanism for controlling ion flux.  相似文献   

3.
以二氟二苯甲酮、双酚A和邻甲基氢醌为单体先经缩聚反应生成聚醚醚酮(PEEK),PEEK经修饰合成含有溴异丙基侧基的聚醚醚酮,以此为原子转移自由基聚合(ATRP)大分子引发剂,通过ATRP法聚合,在PEEK主链上接枝引入聚苯乙烯磺酸钠侧链,得到侧链型PEEK接枝聚合物(PEEK-g-StSO3Na)。 用傅里叶变换红外(FTIR) 光谱、核磁共振氢谱(1H NMR)、热重分析(TG)和扫描电子显微镜(SEM)等技术手段对PEEK-g-StSO3Na的结构进行表征。 结果表明,苯乙烯磺酸钠成功的被接枝到聚醚醚酮主链上,PEEK-g-StSO3Na膜具有明显的亲水疏水微相分离结构,磺酸基团相互聚集形成离子通道,离子交换容量为2.034 mmol/g的PEEK-g-StSO3Na膜的电导率为8.34×10-2 S/cm,膜的尺寸稳定性优于Nafion 117。  相似文献   

4.
The interaction of bile salts with model membranes composed of soybean phosphatidylcholine (SPC) and synthetic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) was investigated using high sensitivity isothermal titration calorimetry (ITC). The partitioning and incorporation of the bile salts sodium cholate (NaC) and sodium deoxycholate (NaDC) from an aqueous phase (pure water or 0.1 M NaCl) into fluid bilayer vesicles was studied as a function of temperature and ionic strength. The thermodynamic parameters of partitioning were determined with a model taking electrostatic interactions into account. In addition, the solubilization of SPC and POPC vesicles with NaC and NaDC as a function of temperature was also studied by ITC and the phase diagrams for the vesicle to micelle transition at two different temperatures were established. Unsaturated phospholipids require higher amounts of detergent to be transformed into micelles compared to saturated phospholipids. In addition, the width of the coexistence region of mixed micelles and mixed vesicles is larger for phosphatidylcholines with unsaturated chains. A comparison of NaDC with NaC shows the higher solubilization effectiveness of NaDC in agreement with its lower cmc. Furthermore, increasing the ionic strength decreases the amount of bile salt necessary for the formation of mixed micelles, which is also expected from the decrease of the cmc with ionic strength due to the shielding of the charges of the bile salts.  相似文献   

5.
Glycosylphosphatidyl-inositol (GPI)-anchored proteins preferentially localize in the most ordered regions of the cell plasma membrane. Acyl and alkyl chain composition of GPI anchors influence the association with the ordered domains. This suggests that, conversely, changes in the fluid and in the ordered domains lipid composition affect the interaction of GPI-anchored proteins with membrane microdomains. Validity of this hypothesis was examined by investigating the spontaneous insertion of the GPI-anchored intestinal alkaline phophatase (BIAP) into the solid (gel) phase domains of preformed supported membranes made of dioleoylphosphatidylcholine/dipalmitoylphosphatidylcholine (DOPC/DPPC), DOPC/sphingomyelin (DOPC/SM), and palmitoyloleoylphosphatidylcholine/SM (POPC/SM). Atomic force microscopy (AFM) showed that BIAP inserted in the gel phases of the three mixtures. However, changes in the lipid composition of membranes had a marked effect on the protein containing bilayer topography. Moreover, BIAP insertion was associated with a net transfer of phospholipids from the fluid to the gel (DOPC/DPPC) or from the gel to the fluid (POPC/SM) phases. For DOPC/SM bilayers, transfer of lipids was dependent on the homogeneity of the gel SM phase. The data strongly suggest that BIAP interacts with the most ordered lipid species present in the gel phases of phase-separated membranes. They also suggest that GPI-anchored proteins might contribute to the selection of their own microdomain environment.  相似文献   

6.
A series of membrane-spanning bolaamphiphiles (molecules with two hydrophilic end groups connected by a hydrophobic linker) were prepared by a modular synthetic method and evaluated for their abilities to affect the dynamics of a surrounding bilayer membrane. The goal was to determine if the bolaamphiphiles promote the translocation of phospholipids across vesicle membranes. The bolaamphiphiles were incorporated at low levels (up to 5 mol %) in vesicles composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). Inward translocation assays were performed using fluorescent, NBD-labeled phospholipid probes with phosphocholine (PC) or phosphoglycerol (PG) headgroups. The membrane-spanning bolaamphiphiles promote the translocation of both phospholipid probes in the order PG > PC, whereas shorter bolaamphiphiles (structures that must adopt a U-shape and keep both end groups in the same leaflet of the membrane), and regular amphiphiles with one hydrophilic end group, are inactive. These results are an exception to the rule-of-thumb that membrane-spanning bolaamphiphiles are inherently membrane-stabilizing molecules that inhibit all types of membrane transport.  相似文献   

7.
A synthetic receptor, with an ability to bind sodium or potassium chloride as a contact ion-pair, is shown to effectively transport either salt across vesicle membranes. Significant transport is observed even when the transporter: phospholipid ratio is as low as 1:2500. Chloride efflux from unilamellar vesicles is monitored using a chloride selective electrode. Mechanistic studies indicate that the facilitated efflux is due to the uncomplexed transporter diffusing into the vesicle and the transporter-salt complex diffusing out. Vesicle influx experiments are also reported, where the facilitated influx of chloride and sodium ions into vesicles is observed directly by 35Cl and 23Na NMR, respectively.  相似文献   

8.
Aqueous dispersions of Laponite, a synthetic clay neutralized by sodium counterions, are used as a model of charged anisotropic colloids to probe the influence of the shape of the particle on their organization within a macroscopic nematic phase. Because of the large fraction of condensed sodium counterions in the vicinity of the clay particle, (23)Na NMR is a sensitive probe of the nematic ordering of the clay dispersions. We used line shape analysis of the (23)Na NMR spectra and measurements of the Hahn echo attenuation to quantify the degree of alignment of the individual clay particles along a single nematic director. As justified by simple dynamical simulations of the interplay between the sodium quadrupolar relaxation and its diffusion through the porous network limited by the surface of the clay particles, we probe the degree of ordering within these clay nematic dispersions by measuring the variation of the apparent (23)Na NMR relaxation rates as a function of the macroscopic orientation of the clay dispersion within the magnetic field.  相似文献   

9.
A series of ion conductors have been synthesized in which the degree of facial hydrophilicity has been systematically varied. Specifically, conjugates have been prepared from cholic acid and spermine in which the hydrophilic face of each sterol bears methoxy (1), hydroxy (2), carbamate (3), or sulfate groups (4). The ability of these conjugates to promote the transport of Na(+) across phosphatidylcholine membranes of varying thickness has been investigated by (23)Na NMR spectroscopy. Examination of observed activities in three different phosphatidylcholine membranes has provided evidence for membrane-spanning dimers as the transport-active species. In the thinnest membranes investigated, made from 1,2-dimyristoleoyl-sn-glycero-3-phosphocholine (C14), Na(+)-transport activity was found to increase, substantially, with increasing facial hydrophilicity. In thicker membranes, made from 1,2-dioleoyl-sn-glycero-3-phosphocholine (C18), observed activities were found to decrease with increasing facial hydrophilicity; with a membrane of intermediate thickness, prepared from 1,2-dipalmitoleoyl-sn-glycero-3-phosphocholine (C16), ion-conducting activity increased and then decreased, with continuous increases in facial hydrophilicity. The possible origins for these variations in activity are briefly discussed.  相似文献   

10.
The present work investigates the interaction of hexadecylbetainate chloride (C(16)BC), a glycine betaine-based ester with palmitoyl-oleoyl-phosphatidylcholine (POPC), sphingomyelin (SM), and cholesterol (CHOL), three biological relevant lipids present in the outer leaflet of the mammalian plasma membrane. The binding affinity and the mixing behavior between the lipids and C(16)BC are discussed based on experimental (isothermal titration calorimetry (ITC) and Langmuir film balance) and molecular modeling studies. The results show that the interaction between C(16)BC and each lipid is thermodynamically favorable and does not affect the integrity of the lipid vesicles. The primary adsorption of C(16)BC into the lipid film is mainly governed by a hydrophobic effect. Once C(16)BC is inserted in the lipid film, the polar component of the interaction energy between C(16)BC and the lipid becomes predominant. Presence of CHOL increases the affinity of C(16)BC for membrane. This result can be explained by the optimal matching between C(16)BC and CHOL within the film rather by a change of membrane fluidity due to the presence of CHOL. The interaction between C(16)BC and SM is also favorable and gives rise to highly stable monolayers probably due to hydrogen bonds between their hydrophilic groups. The interaction of C(16)BC with POPC is less favorable but does not destabilize the mixed monolayer from a thermodynamic point of view. Interestingly, for all the monolayers investigated, the exclusion surface pressures are above the presumed lateral pressure of the plasma membranes suggesting that C(16)BC would be able to penetrate into mammalian plasma membranes in vivo. These results may serve as a useful basis in understanding the interaction of C(16)BC with real membranes.  相似文献   

11.
敬钊毒素-I(JZTX-I)是一种能够抑制心肌钠通道失活的新型蜘蛛神经毒素,该文结合高效液相色谱与色氨酸荧光测定技术研究了JZTX-I的磷脂膜结合活性。脂质体共沉淀实验表明,JZTX-I具有不依赖于带负电荷磷脂组成的生物膜结合活性。当加入由酸性或中性磷脂构成的脂质体后,JZTX-I能够分别产生6.4和4.7nm的蓝移以及7.4和8.0nm的红移激发漂移,显示JZTX-I能够插入磷脂膜,同时该分子疏水表面的色氨酸残基处于一个运动受限的界面区域。荧光淬灭实验进一步证实,与脂质体结合能够减少该毒素分子表面色氨酸残基的溶剂暴露。该研究结果为阐明JZTX-I的离子通道门控调节机制提供了新的信息。  相似文献   

12.
曾雄智  皮建辉  梁宋平 《色谱》2007,25(6):825-829
敬钊毒素-I(JZTX-I)是一种能够抑制心肌钠通道失活的新型蜘蛛神经毒素,该文结合高效液相色谱与色氨酸荧光测定技术研究了JZTX-I的磷脂膜结合活性。脂质体共沉淀实验表明,JZTX-I具有不依赖于带负电荷磷脂组成的生物膜结合活性。当加入由酸性或中性磷脂构成的脂质体后,JZTX-I能够分别产生6.4和4.7 nm的蓝移以及7.4和8.0 nm的红移激发漂移,显示JZTX-I能够插入磷脂膜,同时该分子疏水表面的色氨酸残基处于一个运动受限的界面区域。荧光淬灭实验进一步证实,与脂质体结合能够减少该毒素分子表面色氨酸残基的溶剂暴露。该研究结果为阐明JZTX-I的离子通道门控调节机制提供了新的信息。  相似文献   

13.
Losartan is an angiotensin II receptor antagonist mainly used for the regulation of high blood pressure. Since it was anticipated that losartan reaches the receptor site via membrane diffusion, the impact of losartan on model membranes has been investigated by small angle X-ray scattering. For this purpose 2-20 mol% losartan was incorporated into dimyristoyl-phosphatidylcholine (DMPC) and palmitoyl-oleoyl-phosphatidylcholine (POPC) bilayers and into their binary mixtures with cholesterol in the concentration range of 0 to 40 mol%. Effects of losartan on single component bilayers are alike. Partitioning of losartan into the membranes confers a negative charge to the lipid bilayers that causes the formation of unilamellar vesicles and a reduction of the bilayer thickness by 3-4%. Analysis of the structural data resulted in an estimate for the partial area of losartan, A(Los) ≈ 40 ?(2). In the presence of cholesterol, differences between the effects of losartan on POPC and DMPC are striking. Membrane condensation by cholesterol is retarded by losartan in POPC. This contrasts with DMPC, where an increase of the cholesterol content shifts the partitioning equilibrium of losartan towards the aqueous phase, such that losartan gets depleted from the bilayers from 20 mol% cholesterol onwards. This indicates (i) a chain-saturation dependent competition of losartan with lipid-cholesterol interactions, and (ii) the insolubility of losartan in the liquid ordered phase of PCs. Consequently, losartan's action is more likely to take place in fluid plasma membrane patches rather than in domains rich in cholesterol and saturated lipid species such as in membrane rafts.  相似文献   

14.
Lipid vesicles are designed with functional chemical groups to promote vesicle fusion on template-stripped gold (TS Au) surfaces that does not spontaneously occur on unfunctionalized Au surfaces. Three types of vesicles were exposed to TS Au surfaces: (1) vesicles composed of only 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipids; (2) vesicles composed of lipid mixtures of 2.5 mol % of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-poly(ethylene glycol)-2000-N-[3-(2-pyridyldithio)propionate] (DSPE-PEG-PDP) and 97.5 mol % of POPC; and (3) vesicles composed of 2.5 mol % of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(poly(ethylene glycol))-2000] (DSPE-PEG) and 97.5 mol % POPC. Atomic force microscopy (AFM) topography and force spectroscopy measurements acquired in a fluid environment confirmed tethered lipid bilayer membrane (tLBM) formation only for vesicles composed of 2.5 mol % DSPE-PEG-PDP/97.5 mol % POPC, thus indicating that the sulfur-containing PDP group is necessary to achieve tLBM formation on TS Au via Au-thiolate bonds. Analysis of force-distance curves for 2.5 mol % DSPE-PEG-PDP/97.5 mol % POPC tLBMs on TS Au yielded a breakthrough distance of 4.8 ± 0.4 nm, which is about 1.7 nm thicker than that of POPC lipid bilayer membrane formed on mica. Thus, the PEG group serves as a spacer layer between the tLBM and the TS Au surface. Fluorescence microscopy results indicate that these tLBMs also have greater mechanical stability than solid-supported lipid bilayer membranes made from the same vesicles on mica. The described process for assembling stable tLBMs on Au surfaces is compatible with microdispensing used in array fabrication.  相似文献   

15.
We have developed a simple method to introduce cholesterol- and sphingomyelin-rich chemical heterogeneities into controlled densities and concentrations within predetermined regions of another distinct fluid phospholipid bilayer supported on a solid substrate. A contiguous primary phase--a fluid POPC bilayer displaying a well-defined array of lipid-free voids (e.g., 20-100 microm squares)--was first prepared on a clean glass surface by microcontact printing under water using a poly(dimethylsiloxane) stamp. The aqueous-phase primary bilayer pattern was subsequently incubated with secondary-phase small unilamellar vesicles composed of independent chemical compositions. Backfilling by comparable vesicles resulted in gradual mixing between the primary- and secondary-phase lipids, effacing the pattern. When the secondary vesicles consisted of phase-separating mixtures of cholesterol, sphingomyelin, and a phospholipid (2:1:1 POPC/sphingomyelin/cholesterol or 1:1:1 DOPC/sphingomyelin/cholesterol), well-defined spatial patterns of fluorescence, chemical compositions, and fluidities emerged. We conjecture that these patterns form because of the differences in the equilibration rates of the secondary liquid-ordered and liquid-disordered phases with the primary fluid POPC phase. The pattern stability depended strongly on the ambient-phase temperature, cholesterol concentration, and miscibility contrast between the two phases. When cholesterol concentration in the secondary vesicles was below 20 mol %, secondary intercalants gradually diffused within the primary POPC bilayer phase, ultimately dissolving the pattern in several minutes and presumably forming a new quasi-equilibrated lipid mixture. These phase domain micropatterns retain some properties of biological rafts including detergent resistance and phase mixing induced by selective cholesterol extraction. These patterns enable direct comparisons of cholesterol- and sphingomyelin-rich phase domains and fluid phospholipid phases for their functional preferences and may be useful for developing simple, parallelized assays for phase and chemical composition-dependent membrane functionalities.  相似文献   

16.
Large unilamellar vesicles with a diameter of 100 nm were prepared from the zwitterionic phospholipid POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) at pH 8.0. After addition to these vesicles of the enzyme phospholipase D (PLD) from Streptomyces sp. AA586 at 40 degrees C, the terminal phosphate ester bond of POPC was hydrolyzed, yielding the negatively charged POPA (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidic acid) and the positively charged choline. While the reaction yield in the presence of 1 mM Ca2+ reached 100%, the yield was only approximately 68% in the absence of Ca2+. Furthermore, in the absence of Ca2+, the size of the vesicles did not change significantly with time upon PLD addition, as judged from turbidity, dynamic light scattering, and electron microscopy measurements. In the presence of 1 mM Ca2+, however, PLD addition resulted in vesicle aggregation, fusion, and precipitation, originating from the interaction of Ca2+ ions with the negatively charged phospholipids formed in the membranes. Vesicle fusion was monitored by using a novel fusion assay system involving vesicles containing entrapped trypsin and vesicles containing entrapped chymotrypsinogen A. After vesicle fusion, chymotrypsinogen A transformed into a-chymotrypsin, catalyzed by trypsin inside the fused vesicles. The alpha-chymotrypsin formed could be detected with benzoyl-L-Tyr-p-nitroanilide as a membrane permeable chymotrypsin substrate. The observed vesicle precipitation occurring after vesicle fusion in the presence of 1 mM Ca2+ was correlated with an increase of the main phase transition temperature, Tm, of POPA to values above 40 degrees C.  相似文献   

17.
An ionophore antibiotic salinomycin was studied in a membrane environment consisting of isotropic bicelles, a better model for biological membranes than micelles, and its conformation and topological orientation in bicelles was determined. 2D NMR measurements and restrained conformational search revealed that salinomycin-sodium salt in bicelles adopts an open conformation in which the orientation of the E-ring is significantly different from that in crystal and solution structures. This conformational alteration breaks an intramolecular hydrogen bond between 28-OH and 1-O, dislocates the ether oxygen of the E-ring from a coordinated position to the sodium ion observed in the crystal, and consequently weakens the complexation between salinomycin and the sodium ion. Paramagnetic relaxation experiments using doxyl-phospholipids reveal that salinomycin is embedded shallowly in bicelles, with both terminals being closer to the water interface and the olefin portion facing the bicelle interior. Measurements of intermolecular NOEs between salinomycin and phospholipids further supported this orientation. Weaker complexation with sodium ion and positional preference in the membrane polar region may facilitate the catch-and-release of metal ions at the polar/nonpolar interface of bilayers. On the basis of these findings, a model for salinomycin-assisted transport of metal ions across biological membranes is proposed.  相似文献   

18.
Understanding biological membranes at physiological conditions requires comprehension of the interaction of lipid bilayers with sodium and potassium ions. These cations are adsorbed at palmitoyl-oleoyl-phosphatidylcholine (POPC) bilayers as indicated from previous studies. Here we compare the affinity of Na(+) and K(+) for POPC in molecular dynamics (MD) simulations with recent data from electrophoresis experiments and isothermal calorimetry (ITC) at neutral pH. NaCl and KCl were described using GROMOS or parameters matching solution activities on the basis of Kirkwood-Buff theory (KBFF), and K(+) was also described using parameters by Dang et al., all in conjunction with the Berger parameters for the lipids and the SPC water model. Apparent binding constants of GROMOS-Na(+) and KBFF-K(+) are the same within error and in good agreement with values from ITC. Although these force fields yield the same number of bound ions per number of lipids for Na(+) and K(+), they give a larger number of Na(+) ions per surface area compared to K(+), in agreement with the electrophoresis experiments, because Na(+) causes a stronger reduction in the area per lipid than K(+). The intrinsic binding constants, on the other hand, are reproduced by Dang-K(+) but overestimated by GROMOS-Na(+) and KBFF-K(+). That no ion force field reproduces the intrinsic and the apparent binding constant simultaneously arises from the fact that in MD simulations, implicitly meant to mimic neutral pH, pure PC is usually modeled with zero surface charge. In contrast, POPC at neutral conditions in experiment carries a low but significant negative surface charge and is uncharged only at acidic pH as indicated from electrophoretic mobilities. Implications for future simulation and experimental studies are discussed.  相似文献   

19.
合成了含有识别基团苯硼酸和荧光基团萘的新型对-[(5-十二烷氧基-1-氧基)萘]甲基苯硼酸{p-[(5-dodecyloxy-1-oxy) naphthalene] methyl-phenylboronic acid, DNMPBA}双亲化合物; 该化合物在THF/水选择性溶剂中自组织成囊泡, 囊泡的相变温度为56.8 ℃; 当向囊泡体系加糖时, DNMPBA囊泡中的萘生色基在345 nm的荧光峰强度急剧增强; 荧光强度随添加不同糖的变化趋势为果糖>葡萄糖>麦芽糖>乙二醇. 荧光强度增强可能归因于所形成的硼酸酯减弱了DNMPBA双亲化合物中一个氧原子孤对电子对萘生色基的猝灭作用而使荧光强度重新恢复. DNMPBA囊泡与糖的相互作用导致体系荧光强度变化, 使该体系有可能应用于检测生物物质如糖的化学传感器.  相似文献   

20.
The voltage-sensor domain (VSD) is a modular four-helix bundle component that confers voltage sensitivity to voltage-gated cation channels in biological membranes. Despite extensive biophysical studies and the recent availability of X-ray crystal structures for a few voltage-gated potassium (Kv) channels and a voltage-gate sodium (Nav) channel, a complete understanding of the cooperative mechanism of electromechanical coupling, interconverting the closed-to-open states (i.e., nonconducting to cation conducting) remains undetermined. Moreover, the function of these domains is highly dependent on the physical-chemical properties of the surrounding lipid membrane environment. The basis for this work was provided by a recent structural study of the VSD from a prokaryotic Kv-channel vectorially oriented within a single phospholipid (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)) membrane investigated by X-ray interferometry at the solid/moist He (or solid/vapor) and solid/liquid interfaces, thus achieving partial to full hydration, respectively (Gupta et al. Phys. Rev. E2011, 84, 031911-1-15). Here, we utilize neutron interferometry to characterize this system in substantially greater structural detail at the submolecular level, due to its inherent advantages arising from solvent contrast variation coupled with the deuteration of selected submolecular membrane components, especially important for the membrane at the solid/liquid interface. We demonstrate the unique vectorial orientation of the VSD and the retention of its molecular conformation manifest in the asymmetric profile structure of the protein within the profile structure of this single bilayer membrane system. We definitively characterize the asymmetric phospholipid bilayer solvating the lateral surfaces of the VSD protein within the membrane. The profile structures of both the VSD protein and phospholipid bilayer depend upon the hydration state of the membrane. We also determine the distribution of water and exchangeable hydrogen throughout the profile structure of both the VSD itself and the VSD:POPC membrane. These two experimentally determined water and exchangeable hydrogen distribution profiles are in good agreement with molecular dynamics simulations of the VSD protein vectorially oriented within a fully hydrated POPC bilayer membrane, supporting the existence of the VSD's water pore. This approach was extended to the full-length Kv-channel (KvAP) at a solid/liquid interface, providing the separate profile structures of the KvAP protein and the POPC bilayer within the reconstituted KvAP:POPC membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号