首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We present a combined experimental and computational study of the external heavy atom effect in van der Waals clusters of para-difluorobenzene (pDFB) with rare-gas atoms. Experimentally, clustering with rare-gas atoms is observed to shorten significantly the S1 fluorescence lifetime compared with that of the pDFB monomer, an effect we interpret in terms of an enhancement of the S1-T1 intersystem crossing rate. In order to test the validity of this widely held assumption, we have calculated the S1-T1 spin-orbit coupling matrix elements in the X-pDFB complexes (X=Ne, Ar, Kr) using a multiconfigurational linear response approach.  相似文献   

2.
Pure water experimental and simulation results are combined to predict the thermodynamics of cavity formation, spanning atomic to macroscopic length scales, over the entire ambient liquid temperature range. The resulting cavity equation of state is used to quantify dewetting excess contributions to cavity formation thermodynamics and construct a thermodynamic perturbation theory of hydrophobic hydration. Predictions are compared with large cavity simulations and experimental rare-gas hydration thermodynamics data (for He, Ne, Ar, Kr, Xe, and Rn). Key findings include the strong temperature dependence of the critical length scale for hydrophobic dewetting and the evaluation of fundamental solute-solvent interaction contributions to rare-gas hydration chemical potentials.  相似文献   

3.
The present paper contains inspection of the improved corresponding states principle for transport properties of hydrogen and the binary mixtures of hydrogen with Ne, Ar, Kr and Xe. The set of corresponding states parameters has been defined by a complex numerical analysis of a carefully selected body of experimental data. The obtained correlations for the reduced orientation-averaged diffusion and viscosity collision integrals are restricted to low densities in a temperature range from T = ?/k to the onset of ionization. These equations have been inverted directly to give the isotropic and effective intermolecular potential energy curve for binary mixtures of H2 with Ne, Ar, Kr and Xe corresponding to the viscosity collision integrals. The results are then used to obtain the best Morse-Spline-Van der Waals (MSV) potential parameters. Our inverted potential energies have been compared with experimental intermolecular potentials that were obtained by molecular beam scattering and infrared spectroscopic measurements. In this research, the Chapman–Enskog and Wang Chang-Uhlenbeck-de Boer (WCUB) version of kinetic theory have been used in conjunction with our inverted potential energies to reproduce viscosity, diffusion, thermal conductivity and thermal diffusion factor of binary mixtures of H2 with Ne, Ar, Kr and Xe in a wide temperature range for equimolar composition. As the deviation plots illustrate, our obtained intermolecular potential energies (on the basis of the algorithm presented in the inversion process) represent the low-density transport properties of binary mixtures of H2 with Ne, Ar, Kr and Xe within their expected experimental uncertainties. Close agreement between the predicted values and the literature results of transport properties demonstrates the predictive power of the inversion scheme.  相似文献   

4.
Structural properties, spectroscopic constants and the interaction between rare-gas atom and open and closed-shell iodine atom of weakly bound van der Waals molecules have been studied in details using CCSD(T) method. The Lennard-Jones potential is used to study the interaction and spectroscopic constants of the neutral and anionic systems. The spectroscopic constants and the interacting force between the two atoms of RgI and RgI (Rg = He, Ne and Ar) have been calculated using our method developed recently for the weakly bound molecule in Lennard-Jones potential. The results have been compared with the theoretical and experimental data wherever available. Most of the spectroscopic constants are first reported.  相似文献   

5.
A technique using the broadband emission of a laser plume as probe radiation is applied to record UV-visible (190-510 nm) absorption spectra of Ne, Ar, and Kr, pure and in binary mixtures under moderate e-beam excitation up to 1?MW/cm(3). In all the rare gases and mixtures, the absorption spectra show continuum related to Rg(2) (+) homonuclear ions [peaking at λ~285, 295, and 320 nm in Ne, Ar, and Kr(Ar/Kr), respectively] and a number of atomic lines related mainly to Rg(?)(ms) levels, where m is the lowest principal quantum number of the valence electron. In argon, a continuum related to Ar(2) (?) (λ~325?nm) is also recorded. There are also trains of narrow bands corresponding to Rg(2) (?)(npπ?(3)Π(g))←Rg(2) (?)(msσ?(3)Σ(u) (+)) transitions. All the spectral features mentioned above were reported in literature but have never been observed simultaneously. Although charge transfer to a homonuclear ion of the heavier additive is commonly believed to dominate in binary rare-gas mixtures, it is found in this study that in Ne/Kr mixture, the charge is finally transferred from the buffer gas Ne(2) (+) ion not to Kr(2) (+) but to heteronuclear NeKr(+) ion.  相似文献   

6.
Putative global energy minima of clusters formed by the adsorption of rare gases on a C(60) fullerene molecule, C(60)X(N) (X=Ne, Ar, Kr, Xe; N ≤ 70), are found using basin-hopping global optimization in an empirical potential energy surface. The association energies per rare gas atom as a function of N present two noticeable minima for Ne and Ar and just one for Kr and Xe. The minimum with the smallest N is the deepest one and corresponds to an optimal packing monolayer structure; the other one gives a monolayer with maximum packing. For Kr and Xe, optimal and maximum packing structures coincide. By using an isotropic average form of the X-C(60) interaction, we have established the relevance of the C(60) surface corrugation on the cluster structures. Quantum effects are relevant for Ne clusters. The adsorption of these rare gases on C(60) follows patterns that differ significantly from the ones found recently for He by means of experimental and theoretical methods.  相似文献   

7.
In this paper, we have investigated both the process of rare-gas atoms (He, Ne, Ar, Kr, Xe) injected into single-wall carbon nanotube (SWNT) and the mechanical oscillatory behavior of rare-gas atoms sliding in a SWCNT by using molecular dynamics simulations. The minimal diameters of SWCNT to encapsulate rare-gas atoms are obtained, which are from 6.246 to 7.828 A. The threshold energies to encapsulate rare-gas atoms in SWCNT are also presented, which are less than 0.15 eV/atom. The oscillatory frequencies of the encapsulated atoms in zigzag SWCNT have been studied. The oscillatory frequencies are insensitive to the initial kinetic energy, but they are sensitive to the lengths and the radius of the tube, and they decrease as the length and the radius of the tube increases.  相似文献   

8.
Recent absolute bremsstrahlung cross section experiments on gas targets of Ne, Ar, Kr and Xe at 28 and 50 keV have shown a significant polarization bremsstrahlung (PB) contribution, in contrast with previous thin-film experiments where no PB has been seen. Recently, Obolensky and Pratt have considered ways to improve the PB model, but the theory is still about 20% below the data. While a more complete theoretical calculation is certainly needed, we consider two additional background processes, not corrected in the experiment, that depend on the background photon spectrum in the beam line produced by electron interaction with collimators in the beam. We compare an estimate of both backgrounds with that from beam electrons elastically scattered by the gas into the cell window or wall and discuss initial efforts to measure these backgrounds.  相似文献   

9.
A recently proposed electron gas model is applied to calculate the interaction potentials for HRg (Rg  He, Ne, Ar, Kr). In each case the results are in satisfactory with available experimental values.  相似文献   

10.
A Fano - algebraic diagrammatic construction - Stieltjes method has been recently developed for ab initio calculations of nonradiative decay rates [V. Averbukh and L. S. Cederbaum, J. Chem. Phys. 123, 204107 (2005)] of singly ionized states. In the present work this method is generalized for the case of electronic decay of excited states. The decay widths of autoionizing inner-valence-excited states of Ne, Ar, and Kr are calculated. Apart from the lowest excitation of Kr, they are found to be in good to excellent agreement with the experimental values. Comparison with the other theoretical studies shows that in many cases the new method performs better than the previously available techniques.  相似文献   

11.
Within the concepts of structurally-thermodynamic characteristics of solvation and pseudo-chemical potential, the sample collection of the most authentic experimental data on solubility of gaseous He, Ne, Ar, Kr, Xe, and Rn in H2O and D2O is analysed at ≈0.1 MPa and T = 278–318 K. The conclusion is drawn that at deuteration of water molecules and also with increasing molar mass of noble gas, the relative contribution of effect of its hydrophobic hydration decreases. However in case of pass from lightweight noble gases (He, Ne, Ar) to heavy ones (Kr, Xe, Rn), structural transformations in their aqueous solutions become more expressed as a whole due to strengthening interaction between dissolved substance and solvent.  相似文献   

12.
To understand the optical properties of atoms in solid state matrices, the absorption, excitation, and emission spectra of rubidium doped thin-films of argon, krypton, and xenon were investigated in detail. A two-dimensional spectral analysis extends earlier reports on the excitation and emission properties of rubidium in rare-gas hosts. We found that the doped crystals of krypton and xenon exhibit a simple absorption-emission relation, whereas rubidium in argon showed more complicated spectral structures. Our sample preparation employed in the present work yielded different results for the Ar crystal, but our peak positions were consistent with the prediction based on the linear extrapolation of Xe and Kr data. We also observed a bleaching behavior in rubidium excitation spectra, which suggests a population transfer from one to another spectral feature due to hole-burning. The observed optical response implies that rubidium in rare-gas thin-films is detectable with extremely high sensitivity, possibly down to a single atom level, in low concentration samples.  相似文献   

13.
The vibrational relaxation of gaseous H2 in mixtures with He, Ne, Ar, and Kr was studied by the laser Schlieren technique in incidents shock waves at 1350–3000 K. From the results of 155 experiments the following standard relaxation times for self-relaxation of H2 and relaxation of H2 by He, Ne, Ar and Kr were obtained:
pτ is in atm s, and the qouted uncertainties are standard deviations. The results for H2/H2 and H2/Ar are in very good agreement with previous results of Kiefer and Lutz, and the extrapolated for H2/H2, H2/He and H2/Ar agree very well with low temperature data Ducuing.The linear mixture rule for a additivity of relaxation rates was found to hold, to within experimental accuracy, for the mixtures studied in the present work.  相似文献   

14.
Abstract

The Born-Green equation was numerically analyzed to derive the intermolecular potentials from the observed structural data for liquified rare-gases (Ne, Ar, Kr and Xe). In all cases the Lennard-Jones type potentials were found. The surface tension, surface energy, energy of vapourization, viscosity coefficient and self-diffusion coefficient were calculated and a comparison of calculated values with experimental data was made. Adequate agreement was obtained  相似文献   

15.
The potential energy surfaces (PESs) and S(1)-T(1) spin-orbit coupling matrix element (SOCME) surfaces are investigated for the toluene-X weakly bound clusters (X=Ne, Ar, and Kr). Calculations of the vibrational wave functions using a one-dimensional stretch model are presented and used to determine vibrationally averaged values of the SOCMEs. Our ab initio theoretical results compare well with intersystem crossing rates derived from recent experimental fluorescence lifetime data [Doyle et al., J. Chem. Phys. 122, 194315 (2005)]. Vibrational averaging is shown to change the absolute magnitude of the calculated SOCMEs, but the ratio between them remains very similar to that of the single-point values calculated at the minima of the PESs.  相似文献   

16.
Using both dispersive and inductive interactions, calculations have been made to account for the matrix red-shifts of the Cameron band emissions of CO(a3 Π → X1Σ+) isolated in Nc, Ar and Kr matrices at 4.8 K. Our experimental results along with the matrix shift calculations led us to conclude that CO a3Π forms a bond with the rare-gas atoms whose strength was found to increase from Nc to Kr.  相似文献   

17.
We have measured L X-ray production cross sections for highly charged 156 MeV Be-like Cu ions in collisions with gaseous targets of H2, Ne, Ar, Kr and Xe. In the present collision systems, measured projectile L X-ray intensity is contributed by the excitation as well as electron transfer processes. The projectile L X-ray production cross sections are found to increase initially and then saturate with increasing target atomic number. The charge state dependence of projectile L X-ray production cross sections have been measured with Kr target.  相似文献   

18.
Adiabatic potential curves for the ground state and several low-lying excited states of the barium atom interacting with Ne, Ar, Kr and Xe have been obtained from valence ab initio configuration-interaction calculations. Atomic cores are replaced by scalar-relativistic l-dependent pseudopotentials, while core-polarization potentials are used for describing correlation contributions of the rare-gas atoms and the Ba2+ cores. Implications of the resulting potential curves for the interpretation of experimental data are discussed, together with first applications of the curves for calculating absorption profiles of the (6s 2)1S→(6p)1P Ba transition. Received: 7 April 1998 / Accepted: 27 July 1998 / Published online: 12 October 1998  相似文献   

19.
Measurements are performed on ortho H2(I = 1, j = 1, vibrational ground state)-X dimers with X = Ne, Ar, Kr; the dimers H2-X occur in their van der Waals stretch ground state. The dimer end-over-end rotational states (quantum number L) are investigated for L ?2. The rf hyperfine-transition frequencies are measured, 30 ? v ? 600 kHz. Combining our results with scattering data from the Göttingen group, for H2Ne the full potential could be described with high accuracy. For the other systems, a simple molecular parameter is derived pertaining to the dimer system. As our spectroscopy mainly permits a sensitive probing of the well region, new scattering data are needed to determine accurate model potentials over the full range.  相似文献   

20.
The infrared spectra of the cis and gauche conformers of 3-fluoropropene, CH2CHCH2F, were studied in Ne, Ar, Kr and Xe matrices. An infrared-induced cis to gauche rotamerization was found in Ar, Kr and Xe matrices. A thermal interconversion process was also found. Its direction was dependent upon the host, being the same as that of the IR process in Kr but reverse in Ar and Xe. In Ar and Xe matrices considerable site-splitting occurs in the IR spectra and a detailed analysis of the processes in different sites is given. An energy difference of 2.5±0.3 kJ mol−1 between the cis and gauche species was obtained on assuming that the gas phase equilibrium between the conformers is trapped upon deposition. A slow dark process from cis to gauche conformer was observed in Kr matrices at temperatures above 15 K, possibly due to tunnelling. Ab initio calculations were carried out on 3-fluoropropene. The torsional potential energy curve and spectra of the conformers were calculated at the MP2(full)16-31G** level and were compared with the experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号