首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The one dimensional quantum walk of anyonic systems is presented. The anyonic walker performs braiding operations with stationary anyons of the same type ordered canonically on the line of the walk. Abelian as well as non-Abelian anyons are studied and it is shown that they have very different properties. Abelian anyonic walks demonstrate the expected quadratic quantum speedup. Non-Abelian anyonic walks are much more subtle. The exponential increase of the system’s Hilbert space and the particular statistical evolution of non-Abelian anyons give a variety of new behaviors. The position distribution of the walker is related to Jones polynomials, topological invariants of the links created by the anyonic world-lines during the walk. Several examples such as the SU(2)k and the quantum double models are considered that provide insight to the rich diffusion properties of anyons.  相似文献   

2.
We develop the general quantum measurement theory of non-Abelian anyons through interference experiments. The paper starts with a terse introduction to the theory of anyon models, focusing on the basic formalism necessary to apply standard quantum measurement theory to such systems. This is then applied to give a detailed analysis of anyonic charge measurements using a Mach-Zehnder interferometer for arbitrary anyon models. We find that, as anyonic probes are sent through the legs of the interferometer, superpositions of the total anyonic charge located in the target region collapse when they are distinguishable via monodromy with the probe anyons, which also determines the rate of collapse. We give estimates on the number of probes needed to obtain a desired confidence level for the measurement outcome distinguishing between charges, and explicitly work out a number of examples for some significant anyon models. We apply the same techniques to describe interferometry measurements in a double point-contact interferometer realized in fractional quantum Hall systems. To lowest order in tunneling, these results essentially match those from the Mach-Zehnder interferometer, but we also provide the corrections due to processes involving multiple tunnelings. Finally, we give explicit predictions describing state measurements for experiments in the Abelian hierarchy states, the non-Abelian Moore-Read state at ν=5/2 and Read-Rezayi state at ν=12/5.  相似文献   

3.
For non-abelian simple objects in a unitary modular category, the density of their braid group representations, the #P-hard evaluation of their associated link invariants, and the BQP-completeness of their anyonic quantum computing models are closely related. We systematically study such properties of the non-abelian simple objects in the metaplectic modular categories SO(m)2 for an odd integer m ≥ 3. The simple objects with quantum dimensions \({\sqrt{m}}\) have finite image braid group representations, and their link invariants are classically efficient to evaluate. We also provide classically efficient simulations of their braid group representations. These simulations of the braid group representations can be regarded as qudit generalizations of the Knill–Gottesmann theorem for the qubit case. The simple objects of dimension 2 give us a surprising result: while their braid group representations have finite images and are efficiently simulable classically after a generalized localization, their link invariants are #P-hard to evaluate exactly. We sharpen the #P-hardness by showing that any sufficiently accurate approximation of their associated link invariants is already #P-hard.  相似文献   

4.
SAPTARSHI MANDAL 《Pramana》2013,81(3):503-509
Following the generalized definition of exclusion statistics to infinite-dimensional Hilbert space [Murthy and Shankar, Phys. Rev. Lett. 72, 3629 (1994)] for a single-component anyonic system, we derive a simple relation between second mixed virial coefficient and the mutual exclusion statistics parameters using high-temperature expansion method for multicomponent anyonic system. The above result is derived without working in a specific model and is valid in any spatial dimensions.  相似文献   

5.
In the paper, two-parametric models of fractional statistics are proposed in order to determine the functional form of the distribution function of free anyons. From the expressions of the second and third virial coefficients, an approximate correspondence is shown to hold for three models, namely, the nonadditive Polychronakos statistics and both the incomplete and the nonadditive modifications of the Haldane-Wu statistics. The difference occurs only in the fourth virial coefficient leading to a small correction in the equation of state. For the two generalizations of the Haldane-Wu statistics, the solutions for the statistics parameters g, q exist in the whole domain of the anyonic parameter α ∈ [0; 1], unlike the nonadditive Polychronakos statistics. It is suggested that the search for the expression of the anyonic distribution function should be made within some modifications of the Haldane-Wu statistics.  相似文献   

6.
We obtain new family of quasitriangular Hopf algebras via the author's recent double-bosonisation construction for new quantum groups. They are versions of U q(su n+1) with a fermionic rather than bosonic quantum plane of roots adjoined to U q(su n). We give the n = 2 case in detail. We also consider the anyonic-double of an anyonic ( ) braided group and the double-bosonisation of the free braided group in n variables.  相似文献   

7.
Both, spin and statistics of a quantum system can be seen to arise from underlying (quantum) group symmetries. We show that the spin–statistics theorem is equivalent to a unification of these symmetries. Besides covering the Bose–Fermi case we classify the corresponding possibilities for anyonic spin and statistics. We incorporate the underlying extended concept of symmetry into quantum field theory in a generalised path integral formulation capable of handling general braid statistics. For bosons and fermions the different path integrals and Feynman rules naturally emerge without introducing Grassmann variables. We also consider the anyonic example of quons and obtain the path integral counterpart to the usual canonical approach.  相似文献   

8.
LetΓ=Γ ±,z be one of theN 2-dimensional bicovariant first order differential calculi for the quantum groups GL q (N), SL q (N), SO q (N), or Sp q (N), whereq is a transcendental complex number andz is a regular parameter. It is shown that the de Rham cohomology of Woronowicz’s external algebraΓ ^ coincides with the de Rham cohomologies of its leftinvariant, its right-invariant and its biinvariant subcomplexes. In the cases GL q (N) and SL q (N) the cohomology ring is isomorphic to the biinvariant external algebraΓ inv ^ and to the vector space of harmonic forms. We prove a Hodge decomposition theorem in these cases. The main technical tool is the spectral decomposition of the quantum Laplace-Beltrami operator. It is also applicable for quantum Euclidean spheres. The eigenvalues of the Laplace-Beltrami operator in cases of the general linear quantum group, the orthogonal quantum group, and the quantum Euclidean spheres are given.  相似文献   

9.
The quantum anisotropic antiferromagnetic Heisenberg model with single ion anisotropy, spin S=1 and up to the next-next-nearest neighbor coupling (the J1J2J3 model) on a square lattice, is studied using the bond-operator formalism in a mean field approximation. The quantum phase transitions at zero temperature are obtained. The model features a complex T=0 phase diagram, whose ordering vector is subject to quantum corrections with respect to the classical limit. The phase diagram shows a quantum paramagnetic phase situated among Neél, spiral and collinear states.  相似文献   

10.
We review the properties of supersymmetric quantum mechanics for a class of models proposed by Witten. Using both Hamiltonian and path integral formulations, we give general conditions for which supersymmetry is broken (unbroken) by quantum fluctuations. The spectrum of states is discussed, and a virial theorem is derived for the energy. We also show that the euclidean path integral for supersymmetric quantum mechanics is equivalent to a classical stochastic process when the supersymmetry is unbroken (E0 = 0). By solving a Fokker-Planck equation for the classical probability distribution, we find Pc(y) is identical to |Ψ0(y)|2 in the quantum theory.  相似文献   

11.
A spin-1/2 system on a honeycomb lattice is studied. The interactions between nearest neighbors are of XX, YY or ZZ type, depending on the direction of the link; different types of interactions may differ in strength. The model is solved exactly by a reduction to free fermions in a static Z2 gauge field. A phase diagram in the parameter space is obtained. One of the phases has an energy gap and carries excitations that are Abelian anyons. The other phase is gapless, but acquires a gap in the presence of magnetic field. In the latter case excitations are non-Abelian anyons whose braiding rules coincide with those of conformal blocks for the Ising model. We also consider a general theory of free fermions with a gapped spectrum, which is characterized by a spectral Chern number ν. The Abelian and non-Abelian phases of the original model correspond to ν = 0 and ν = ±1, respectively. The anyonic properties of excitation depend on ν mod 16, whereas ν itself governs edge thermal transport. The paper also provides mathematical background on anyons as well as an elementary theory of Chern number for quasidiagonal matrices.  相似文献   

12.
We have performed magneto-transport experiments in modulation-doped Ga0.7In0.3NyAs1−y/GaAs quantum wells with nitrogen mole fractions 0.4%, 1.0% and 1.5%. Classical magnetotransport (resistivity and low-field Hall effect) measurements have been performed in the temperatures between 1.8 and 275 K, while quantum Hall effect measurements in the temperatures between 1.8 and 47 K and magnetic fields up to 11 T.The variations of Hall mobility and Hall carrier density with nitrogen mole fractions and temperature have been obtained from the classical magnetotransport measurements. The results are used to investigate the scattering mechanisms of electrons in the modulation-doped Ga0.7In0.3NyAs1−y/GaAs quantum wells. It is shown that the alloy disorder scattering is the major scattering mechanism at investigated temperatures.The quantum oscillations in Hall resistance have been used to determine the carrier density, effective mass, transport mobility, quantum mobility and Fermi energy of two-dimensional (2D) electrons in the modulation-doped Ga0.7In0.3NyAs1−y/GaAs quantum wells. The carrier density, in-plane effective mass and Fermi energy of the 2D electrons increases when the nitrogen mole fraction is increased from y=0.004 to 0.015. The results found for these parameters are in good agreement with those determined from the Shubnikov-de Haas effect in magnetoresistance.  相似文献   

13.
We show that the quantum Heisenberg groupH q (1) and its *-Hopf algebra structure can be obtained by means of contraction from quantumSU q (2) group. Its dual Hopf algebra is the quantum Heisenberg algebraU q (h(1)). We derive left and right regular representations forU q (h(1)) as acting on its dualH q (1). Imposing conditions on the right representation, the left representation is reduced to an irreducible holomorphic representation with an associated quantum coherent state. Realized in the Bargmann-Hilbert space of analytic functions the unitarity of regular representation is also shown. By duality, left and right regular representations for quantum Heisenberg group with the quantum Heisenberg algebra as representation module are also constructed. As before reduction of group left representations leads to finite dimensional irreducible ones for which the intertwinning operator is also investigated.  相似文献   

14.
The transverse-field XY model in one dimension is a well-known spin model for which the ground state properties and excitation spectrum are known exactly. The model has an interesting phase diagram describing quantum phase transitions (QPTs) belonging to two different universality classes. These are the transverse-field Ising model and the XX model universality classes with both the models being special cases of the transverse-field XY model. In recent years, quantities related to quantum information theoretic measures like entanglement, quantum discord (QD) and fidelity have been shown to provide signatures of QPTs. Another interesting issue is that of decoherence to which a quantum system is subjected due to its interaction, represented by a quantum channel, with an environment. In this paper, we determine the dynamics of different types of correlations present in a quantum system, namely, the mutual information I(?? AB ), the classical correlations C(?? AB ) and the quantum correlations Q(?? AB ), as measured by the quantum discord, in a two-qubit state. The density matrix of this state is given by the nearest-neighbour reduced density matrix obtained from the ground state of the transverse-field XY model in 1d. We assume Markovian dynamics for the time-evolution due to system-environment interactions. The quantum channels considered include the bit-flip, bit-phase-flip and phase-flip channels. Two different types of dynamics are identified for the channels in one of which the quantum correlations are greater in magnitude than the classical correlations in a finite time interval. The origins of the different types of dynamics are further explained. For the different channels, appropriate quantities associated with the dynamics of the correlations are identified which provide signatures of QPTs. We also report results for further-neighbour two-qubit states and finite temperatures.  相似文献   

15.
《Nuclear Physics B》2001,618(3):437-464
By representing the field content as well as the particle creation operators in terms of fermionic Fock operators, we compute the corresponding matrix elements of the Federbush model. Only when these matrix elements satisfy the form factor consistency equations involving anyonic factors of local commutativity, the corresponding operators are local. We carry out the ultraviolet limit, analyse the momentum space cluster properties and demonstrate how the Federbush model can be obtained from the SU(3)3-homogeneous sine-Gordon model. We propose a new class of Lagrangians which constitute a generalization of the Federbush model in a Lie algebraic fashion. We evaluate the associated scattering matrices from first principles, which can alternatively also be obtained in a certain limit of the homogeneous sine-Gordon models.  相似文献   

16.
By using the density matrix renormalization group technique, the quantum phase transitions in the frustrated Majumdar-Ghosh model are investigated. The behaviors of the conventional order parameter and the quantum entanglement entropy are analyzed in detail. The order parameter is found to peak at J2∼0.58, but not at the Majumdar-Ghosh point (J2=0.5). Although, the quantum entanglements calculated with different subsystems display dissimilarly, the extremes of their first derivatives approach to the same critical point. By finite size scaling, this quantum critical point JC2 converges to around 0.301 in the thermodynamic limit, which is consistent with those predicted previously by some authors (Tonegawa and Harada, 1987 [6]; Kuboki and Fukuyama, 1987 [7]; Chitra et al., 1995 [9]). Across the JC2, the system undergoes a quantum phase transition from a gapless spin-fluid phase to a gapped dimerized phase.  相似文献   

17.
Anderson localization emerges in quantum systems when randomized parameters cause the exponential suppression of motion. Here we consider this phenomenon in topological models and establish its usefulness for protecting topologically encoded quantum information. For concreteness we employ the toric code. It is known that in the absence of a magnetic field this can tolerate a finite initial density of anyonic errors, but in the presence of a field anyonic quantum walks are induced and the tolerable density becomes zero. However, if the disorder inherent in the code is taken into account, we demonstrate that the induced localization allows the topological quantum memory to regain a finite critical anyon density and the memory to remain stable for arbitrarily long times. We anticipate that disorder inherent in any physical realization of topological systems will help to strengthen the fault tolerance of quantum memories.  相似文献   

18.
The T-x magnetic phase diagram of Mn1 ? x Fe x Si solid solutions is probed by magnetic susceptibility, magnetization and resistivity measurements. The boundary limiting phase with short-range magnetic order (analogue of the chiral liquid) is defined experimentally and described analytically within simple model accounting both classical and quantum magnetic fluctuations together with effects of disorder. It is shown that Mn1 ? x Fe x Si system undergoes a sequence of two quantum phase transitions. The first “underlying” quantum critical (QC) point x* ~ 0.11 corresponds to disappearance of the long-range magnetic order. This quantum phase transition is masked by short-range order phase, however, it manifests itself at finite temperatures by crossover between classical and quantum fluctuations, which is predicted and observed in the paramagnetic phase. The second QC point x c ~ 0.24 may have topological nature and corresponds to percolation threshold in the magnetic subsystem of Mn1 ? x Fe x Si. Above x c the short-range ordered phase is suppressed and magnetic subsystem becomes separated into spin clusters resulting in observation of the disorder-driven QC Griffiths-type phase characterized by an anomalously divergent magnetic susceptibility χ ~ 1/T ξ with the exponents ξ ~ 0.5–0.6.  相似文献   

19.
《Physics letters. A》2002,298(4):236-237
The ground state of a class of Ising models with site dependent arbitrary spin quantum number is shown to be restricted to ±SiMAX state where SiMAX is the spin quantum number at the site i.  相似文献   

20.
Using the typical generators of the special unitary groups S U(2), the concrete representation of symmetric quantum state is established, then the relations satisfied by those coefficients in the representation are presented. Based on the representation of density matrix, the PPT criterion and CCNR criterion are proved to be equivalent on judging the separability of symmetric quantum states. Moreover, it is showed that the matrix Γ ρ of symmetric quantum state only has five efficient entries, thus the calculation of ∥Γ ρ ∥ is simplified. Finally, the quantitative expressions of real symmetric quantum state under the ∥Γ ρ ∥ separability criterion are obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号