首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

In the soft-photon approximation, compact expressions for two-loop final-state electromagnetic radiative corrections to the four-fermion process in the s channel are obtained on the basis of the on-shell renormalization scheme. As applied to the Drell—Yan process, an efficient procedure for numerically estimating final-state radiative effects is proposed for experiments at the LHC for high invariant masses.

  相似文献   

2.
G. Degrassi  P. Slavich   《Nuclear Physics B》2008,805(1-2):267-286
We present explicit analytic results for the two-loop top/stop/gluino contributions to the cross section for the production of CP-even Higgs bosons via gluon fusion in the MSSM, under the approximation of neglecting the Higgs boson mass with respect to the masses of the particles circulating in the loops. The results are obtained employing the low-energy theorem for Higgs interactions adapted to the case of particle mixing. We discuss the validity of the approximation used by computing the first-order correction in an expansion in powers of the Higgs boson mass. We find that, for the lightest CP-even Higgs boson, the gluino contribution is very well approximated by the result obtained in the limit of vanishing Higgs mass. As a byproduct of our calculation, we provide results for the two-loop QCD contributions to the photonic Higgs decay.  相似文献   

3.
A renormalization scheme for the electroweak standard model is presented in which the electric charge and the masses of the gauge bosons, Higgs particle and fermions are used as physical parameters. The photon is treated such that quantum electrodynamics is contained as a simple substructure. Field renormalization respecting the gauge symmetry gives finite propagators and vertex functions. The Ward identities between the Green functions of the unphysical sector allow a renormalization that maintains the simple pole structure of the propagators in the t'Hooft-Feynman gauge. We give a complete list of self energies and all renormalization constants also in the unphysical Higgs and ghost sector. Explicit results are given for the renormalized self energies, vertex functions and boxes that enter the evaluation of 1-loop radiative corrections to fermionic processes. We calculate the 1-loop radiative corrections to purely leptonic reactions like μ decay, vμμe scattering and μ pair production in e+eannihilation. A test of the standard model is performed by comparing these low energy data with the results of the PP collider experiments for the W and Z boson masses.  相似文献   

4.
The structure of the Higgs sector in the minimal supersymmetric standard model is reviewed at the oneloop level. An on-shell renormalization scheme of the MSSM Higgs sector is presented in detail together with the complete list of formulae for the neutral Higgs masses at the one-loop level. The results of a complete one-loop calculation for the mass spectrum of the neutral MSSM Higgs bosons and the quality of simpler Born-like approximations are discussed for sfermion and gaugino masses in the range of the electroweak scale.  相似文献   

5.
The neutrino and Higgs sectors in the \(\text{ SU(2) }_1 \times \text{ SU(2) }_2 \times \text{ U(1) }_Y \) model with lepton-flavor non-universality are discussed. We show that active neutrinos can get Majorana masses from radiative corrections, after adding only new singly charged Higgs bosons. The mechanism for the generation of neutrino masses is the same as in the Zee models. This also gives a hint to solving the dark matter problem based on similar ways discussed recently in many radiative neutrino mass models with dark matter. Except the active neutrinos, the appearance of singly charged Higgs bosons and dark matter does not affect significantly the physical spectrum of all particles in the original model. We indicate this point by investigating the Higgs sector in both cases before and after singly charged scalars are added into it. Many interesting properties of physical Higgs bosons, which were not shown previously, are explored. In particular, the mass matrices of charged and CP-odd Higgs fields are proportional to the coefficient of triple Higgs coupling \(\mu \). The mass eigenstates and eigenvalues in the CP-even Higgs sector are also presented. All couplings of the SM-like Higgs boson to normal fermions and gauge bosons are different from the SM predictions by a factor \(c_h\), which must satisfy the recent global fit of experimental data, namely \(0.995<|c_h|<1\). We have analyzed a more general diagonalization of gauge boson mass matrices, then we show that the ratio of the tangents of the W\(W'\) and Z\(Z'\) mixing angles is exactly the cosine of the Weinberg angle, implying that number of parameters is reduced by 1. Signals of new physics from decays of new heavy fermions and Higgs bosons at LHC and constraints of their masses are also discussed.  相似文献   

6.
We calculate the dominant one-loop radiative corrections arising from quark-squark loops to the mass squared matrix of theCP-even Higgs bosons in a non-minimal supersymmetric Standard Model containing two Higgs doublets and a Higgs singlet chiral superfield using one-loop effective potential approximation. We use this result to evaluate upper and lower bounds on the radiatively corrected masses of all the scalar Higgs bosons as a function of the parameters of the model. We find that the one-loop radiative corrections are substantial only for the lightest Higgs boson of the model and can push its mass beyond the reach of LEP. We also calculate an absolute upper bound on the mass of the radiatively corrected lightest Higgs boson and compare it with the corresponding bound in the minimal supersymmetric Standard Model.  相似文献   

7.
8.
An Aoki–Denner form of the renormalization scheme is suggested for the physical amplitudes in the minimal supersymmetric standard model. With the more explicit wave-function renormalization, the scheme is parameterized by the mass of the physical pseudoscalar () and the mass of heavy CP-even neutral Higgs () instead of the conventional , as input. The counterterm of is defined on mass shell perturbatively just within the Higgs sector. The renormalization of gauge-scalar mixings are fixed by proper Ward–Takahashi identities. The effect of the reparameterization is also probed to the radiative correction of the mass of the lightest Higgs. Received: 23 March 1999 / Published online: 16 November 1999  相似文献   

9.
We present detailed results of a diagrammatic calculation of the leading two-loop QCD corrections to the masses of the neutral -even Higgs bosons in the Minimal Supersymmetric Standard Model (MSSM). The two-loop corrections are incorporated into the full diagrammatic one-loop result and supplemented with refinement terms that take into account leading electroweak two-loop and higher-order QCD contributions. The dependence of the results for the Higgs-boson masses on the various MSSM parameters is analyzed in detail, with a particular focus on the part of the parameter space accessible at LEP2 and the upgraded Tevatron. For the mass of the lightest Higgs boson, , a parameter scan has been performed, yielding an upper limit on which depends only on . The results for the Higgs-boson masses are compared with results obtained by renormalization group methods. Good agreement is found in the case of vanishing mixing in the scalar quark sector, while sizable deviations occur if squark mixing is taken into account. Received: 11 January 1999 / Published online: 28 May 1999  相似文献   

10.
Physics of Atomic Nuclei - Asymptotic expressions for one-loop electroweak radiative corrections to observables of polarized Bhabha scattering are obtained within the on-shell renormalization...  相似文献   

11.
Using the effective potential method, we computed one-loop corrections to the mass matrix of neutral Higgs bosons of the Non-Holomorphic Supersymmetric Standard Model (NHSSM) with explicit CP violation, where the radiative corrections due to the quarks and squarks of the third generation were taken into account. We observed that the non-holomorphic trilinear couplings can compete with the holomorphic ones in CP violating issues for the mass and mixing of the neutral Higgs bosons.  相似文献   

12.
Within the framework of the minimal non-minimal supersymmetric standard model (MNMSSM) with tadpole terms, CP violation effects in the Higgs sector are investigated at the one-loop level, where the radiative corrections from the loops of the quark and squarks of the third generation are taken into account. Assuming that the squark masses are not degenerate, the radiative corrections due to the stop and sbottom quarks give rise to CP phases which trigger the CP violation explicitly in the Higgs sector of the MNMSSM. The masses, the branching ratios for dominant decay channels, and the total decay widths of the five neutral Higgs bosons in the MNMSSM are calculated in the presence of explicit CP violation. The dependence of these quantities on the CP phases is quite recognizable, for given parameter values.  相似文献   

13.
In the Minimal Supersymmetric Standard Model with complex parameters (cMSSM) we calculate higher order corrections to the Higgs boson sector in the Feynman-diagrammatic approach using the on-shell renormalization scheme. The application of this approach to the cMSSM, being complementary to existing approaches, is analyzed in detail. Numerical examples for the leading fermionic corrections, including the leading two-loop effects, are presented. Numerical agreement within 10% with other approaches is found for small and moderate mixing in the scalar top sector. The leading fermionic corrections, supplemented by the full logarithmic one-loop and the leading two-loop contributions are implemented into the public Fortran code FeynHiggsFastC. Received: 6 August 2001 / Revised version: 8 October 2001 / Published online: 21 November 2001  相似文献   

14.
15.
《Nuclear Physics B》1986,272(1):1-76
We describe the properties of Higgs bosons in a class of supersymmetric theories. We consider models in which the low-energy sector contains two weak complex doublets and perhaps one complex gauge-singlet Higgs field. Supersymmetry is assumed to be either softly or spontaneously broken, thereby imposing a number of restrictions on the Higgs boson parameters. We elucidate the Higgs boson masses and present Feynman rules for their couplings to the gauge bosons, fermions and scalars of the theory. We also present Feynman rules for vertices which are related by supersymmetry to the above couplings. Exact analytic expressions are given in two useful limits — one corresponding to the absence of the gauge-singlet Higgs field and the other corresponding to the absence of a supersymmetric Higgs mass term.  相似文献   

16.
Ikka Liede 《Nuclear Physics B》1983,229(2):499-508
The electromagnetic (EM) radiative corrections to the inclusive νN deep inelastic charged and neutral-current (CC and NC) scattering are studied in the on-shell renormalization scheme of the standard electroweak (EW) model.  相似文献   

17.
We present an on-shell scheme to renormalize the Cabibbo-Kobayashi-Maskawa (CKM) matrix. It is based on a novel procedure to separate the external-leg mixing corrections into gauge-independent self-mass and gauge-dependent wave function renormalization contributions, and to implement the on-shell renormalization of the former with nondiagonal mass counterterm matrices. Diagonalization of the complete mass matrix leads to an explicit CKM counterterm matrix, which automatically satisfies all the following important properties: it is gauge independent, preserves unitarity, and leads to renormalized amplitudes that are nonsingular in the limit in which any two fermions become mass degenerate.  相似文献   

18.
The total hadronic decay width of the Weinberg-Salam type Higgs boson is estimated in QCD for the Higgs boson mass much larger than the ordinary hadronic mass scale, by use of the operator product expansion and renormalization group equation. We give an explicit formula for the decay width in terms of quark masses including strong interaction corrections up to the next-to-leading order. A numerical analysis of the hadronic decay width of the Higgs boson is made in the six-quark model. The next-to-leading order correction is found to be significant, e.g., 30-20% of the leading term for mH of oue interest, mH ? 1 TeV. Application of our scheme to the decay rates of heavy Higgs bosons of other types is also discussed.  相似文献   

19.
We show that, in the low-scale type-I seesaw model, renormalization group running of neutrino parameters may lead to significant modifications of the leptonic mixing angles in view of so-called seesaw threshold effects. Especially, we derive analytical formulas for radiative corrections to neutrino parameters in crossing the different seesaw thresholds, and show that there may exist enhancement factors efficiently boosting the renormalization group running of the leptonic mixing angles. We find that, as a result of the seesaw threshold corrections to the leptonic mixing angles, various flavor symmetric mixing patterns (e.g., bi-maximal and tri-bimaximal mixing patterns) can be easily accommodated at relatively low energy scales, which is well within the reach of running and forthcoming experiments (e.g., the LHC).  相似文献   

20.
We propose that the CP violating phase in the CKM mixing matrix is identical to the CP phases responsible for the spontaneous CP violation in the Higgs potential. A multi-Higgs model with Peccei–Quinn (PQ) symmetry is constructed to realize this idea. The CP violating phase does not vanish when all Higgs masses become large. In general, here are flavor changing neutral current (FCNC) interactions mediated by neutral Higgs bosons at the tree level. However, unlike general multi-Higgs models, the FCNC Yukawa couplings are fixed in terms of the quark masses and CKM mixing angles. Implications for meson–anti-meson mixing, including recent data on D–D̄ mixing, and the electric dipole moment (EDM) of the neutron are studied. We find that the neutral Higgs boson masses can be at the order of one hundred GeV. The neutron EDM can be close to the present experimental upper bound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号