首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The absolute cross section for photodissociation of Ar2N 2 + was measured as a function of wavelength in the 470–550 nm range. A structureless broad band was observed; the cross section has a maximum of ~ 210 × 10?18 cm2 at ~ 500 nm. The measurement of the photofragment time-of-flight spectrum shows that(1) N 2 + , Ar+ and Ar 2 + are produced in the photodissociation of Ar2N 2 + in the wavelength range studied, and that(2) the observed visible absorption band is ascribable to a parallel-type transition of Ar2N 2 + , which possibly retains a linear geometry.  相似文献   

2.
Guided ion beam mass spectrometry is used to measure the cross sections as a function of kinetic energy for reaction of SiH4 with O+(4S), O 2 + (2Πg,v=0), N+(3P), and N 2 + (2Σ g + ,v=0). All four ions react with silane by dissociative charge-transfer to form SiH m + (m=0?3), and all but N 2 + also form SiXH m + products where (m=0?3) andX=O, O2 or N. The overall reactivity of the O+, O 2 + , and N+ systems show little dependence on kinetic energy, but for the case of N 2 + , the reaction probability and product distribution relies heavily on the kinetic energy of the system. The present results are compared with those previously reported for reactions of the rare gas ions with silane [13] and are discussed in terms of vertical ionization from the 1t 2 and 3a 1 bands of SiH4. Thermal reaction rates are also provided and dicussed.  相似文献   

3.
Configuration interaction calculations are carried out to study the potential energy surface for the system Ar-Ar 2 + . An all-electron as well as a pseudopotential treatment is employed. It is found that in the perpendicular Ar approach the Ar 2 + partner remains essentially unchanged and the potential can be characterized by an electrostatic ion-induced dipole interaction. In the collinear mode of Ar approach the Ar 2 + bond separation increases considerably, the charge is redistributed and the interaction can be characterized as chemical bonding. The minimum on the surface is found to be the linear symmetric molecule with bond lengths of 2.62 Å. The optimum structure in the perpendicular approach lies 0.13 eV above the minimum and is the T-shaped molecule in which the Ar is 3.65 Å away from the midpoint of the Ar 2 + (r=2.46 Å) system; the best equilateral triangle structure has a bond length of 2.99 Å but is found to lie 0.64 eV above the Ar 3 + minimum. The dissociation energy into Ar 2 + + Ar is calculated to be 0.16 eV in reasonable agreement with experimental values of 0.21 eV. The potential curves for the four lowest states of Ar 2 + are also treated.  相似文献   

4.
The formation of Ar 2 + ions has been investigated by means of the threshold photoelectron photoion coincidence (TPEPICO) technique. Two pathways for the formation of Ar 2 + ions are important. One is a direct path via excitation of Rydberg states of Ar2 with consecutive autoionization. The other path is dissociative ionization of larger argon clusters, in this case argon trimers. These two pathways lead to Ar 2 + ions with different internal energy. The pathways are easily distinguished in the TPEPICO-TOF spectra by the kinetic energy released (KER) in the dissociative ionization. The KER for the reaction Ar 3 + → Ar 2 + + Ar was measured as a function of the photon energy and compared to the KER expected from statistical theory. The agreement is satisfying and confirms that Ar 3 + ions do indeed dissociate at the thermochemical threshold. At higher photon energy the excited2Π(3/2)g state of Ar 3 + is also detected from a second component in the KER. By applying a kinetic energy discrimination it is possible to measure cluster ion spectra in the presence of larger clusters but essentially without interference from the latter.  相似文献   

5.
The formation of binary complex salts containing gold(III) in the cation and palladium(II) in the anion in the systems [(Bipy)AuCl2]+-[PdCl4]2? occurs by transfer of the N,N-electron-donating chelating ligand bipyridine and the chloride ligands between the gold-containing cation and the palladium-containing anion. The resulting neutral salt [(Bipy)PdCl2] crystallizes together with the anion [AuCl4]? from acetonitrile-water (1 : 1-1 : 2, v/v) to give the complex salt (NH 4 + )0.20[(Bipy)AuCl 2 + ]1.04[(Bipy)PdCl2]0.96[AuCl 4 ? ]0.76PdCl 4 2? ]0.24 with a total Au : Pd ratio of 3 : 2. The ammonium cation is formed from acetonitrile upon its hydrolysis most likely catalyzed by Pd complexes. Quantum-chemical calculations were performed to study the transfer of the chelating ligand theoretically.  相似文献   

6.
The full potential energy surface (PES) for the collinear Ar 4 + cluster as a function of the three internuclear distances is computed at the post-Hartree-Fock level using Density Functional Theory (DFT) methods to treat dynamic correlation effects. The behaviour of the overall configuration energy minima as the central Ar 2 + bond stretches is analysed as a function of the fragmentation coordinates of the wing atoms. The coupling between the stretching coordinate and the fragmentation coordinates is also analysed over the whole PES. The calculations suggest that large vibrational energy content in the core dimer ion causes localization of the coupling with either wing atoms which could in turn favour energetically the sequential fragmentation, while Ar 4 + with a vibrationally cold core markedly lowers any energy barrier to fragment in a concerted fashion. Such suggestions provide further useful information for what has been found in some of the experimental studies on this ionic system (and on larger ionized argon clusters) and underline the possible role which the internal vibrational energy content of the ionic cluster can play in the fragmentation.  相似文献   

7.
Rare gas ions Ne+, Ar+ and Kr+ are injected into a drift tube which is filled with helium gas and cooled by liquid helium. Helium cluster ions RgHe x + (Rg=Ne, Ar and Kr,x≦14) are observed as products. Information regarding the stability of RgHe x + is obtained from drift field dependence of the size distribution of the clusters, and magic numbers are determined. The magic numbers arex=11 and 13 for NeHe x + andx=12 for ArHe x + and KrHe x + . NeHe x + , Ar+ and Kr+ are proposed as the core ions for NeHe 13 + , ArHe 12 + and KrHe 12 + , respectively.  相似文献   

8.
The photodissociation of Ar 3 + is studied following a consistent theoretical approach from the Potential Energy Surfaces to the dynamics. Six P.E.S. are computed according to a D.I.M.-like model Hamiltonian. Transition dipole moments are determined using a similar method. The 4-D dynamics of this system is obtained with the H.W.D. method (Hemiquantal dynamic with the Whole DIM basis). All the 4 nuclear degrees of freedom and all the 6 electronic states are involved in the dynamical calculations, allowing for very general investigations. The main theoretical results are:
  1. the spectrum essentially results from a Σ → Σg transition to the second excited electronic state along with a symmetric stretching motion
  2. excited Ar 3 + molecules almost all dissociate in Ar+ + 2 Ar
  3. dissociation in Ar 2 + + Ar requires special conditions such as low laser excitation and is predicted to increase with a specific excitation of the bending mode
  4. the dominant symmetric stretching motion induces a bimodal kinetic energy distribution of the fragments.
All these points are in close agreement with experimental results.  相似文献   

9.
Metastable decay of cluster ions has been discovered only recently. It was noted that one has to take this metastable decay into account when using mass spectrometry to probe neutral clusters, because ion abundance anomalies in mass spectra of rare gas and molecular clusters are caused by delayed metastable evaporation of monomers following ion production. Moreover, it was found that(i) the individual metastable reaction rates k depend strongly on cluster size and cluster ion production pathways and that(ii) there exists experimental evidence (k=k(t)) and a theoretical prediction that a given mass selected cluster ion generated by electron impact ionization of a nozzle expansion beam will comprise a range of metastable decay rates. In addition, it was discovered that metastable Ar cluster ions which lose two monomers in the μs time regime decay via sequential decay series Ar n + *→Ar n?1 + *→Ar n?2 + * with cluster sizes 7≤n≤10 andn=3 (similar results were obtained recently in case of N2 cluster ions). Conversely, the dominant metastable decay channel of Ar 4 + * into Ar 2 + was found to proceed predominantly via a single step fissioning process.  相似文献   

10.
The potential energy surface (PES) of linear Ar 3 + is calculated at the MP4/6-31G* level including all single, double, triple and quadruple excitations. The results show that the PES of the linear Ar 3 + has a very flat valley along the asymmetric stretching vibration normal mode, ν3. A higher level quadratic configuration interaction calculation including single, double and triple substitutions QCISD (T) along this flat valley suggests that an asymmetric geometry energy minimum reported earlier based on MP2 [1] is due to symmetry breaking in UHF. The global minimum of the PES is found to be for the symmetric geometry atR ab =R bc =2.66±0.01 Å, which is in good agreement with the MRD-CI calculation [2] and expectations from our earlier photodissociation experiments [3]. The calculational results are compared with other theoretical calculations, and are discussed in the context of the photodissociation and dynamics of dissociation experiments conducted on Ar 3 + .  相似文献   

11.
The emission of the ND4 Schüler band was observed after neutralization of a mass-selected ND 4 + ion beam. Thus the assignment of this band to the ammonium radical was confirmed. The lifetime of the upper state (3p 2 F 2) was determined to be 4.2 ns, which is much shorter than ab initio values of the radiative lifetime, showing that this state decays predominantly by predissociation. The Schuster band was not observed, neither after neutralization of ND 4 + , nor of ND 3 + .  相似文献   

12.
Fe n + and Pd n + clusters up ton=19 andn=25, respectively, are produced in an external ion source by sputtering of the respective metal foils with Xe+ primary ions at 20 keV. They are transferred to the ICR cell of a home-built Fourier transform mass spectrometer, where they are thermalized to nearly room temperature and stored for several tens of seconds. During this time, their reactions with a gas leaked in at low level are studied. Thus in the presence of ammonia, most Fe n + clusters react by simply adsorbing intact NH3 molecules. Only Fe 4 + ions show dehydrogenation/adsorption to Fe4(NH) m + intermediates (m=1, 2) that in a complex scheme go on adsorbing complete NH3 units. To clarify the reaction scheme, one has to isolate each species in the ion cell, which often requires the ejection of ions very close in mass. This led to the development of a special isolation technique that avoids the use of isotopically pure metal samples. Pd n + cluster ions (n=2...9) dehydrogenate C2H4 in general to yield Pd n (C2H2)+, yet Pd 6 + appear totally unreactive. Towards D2, Pd 7 + ions seem inert, whereas Pd 8 + adsorb up to two molecules.  相似文献   

13.
The stability of multiply charged Pb n m+ -clusters (n ≤ 3;m=0, 1, 2) was studied by solving exactly for the valencep-electrons a many body Hubbard-like Hamiltonian with intra- and interatomic Coulomb interactions. Particularly we obtain that Pb 3 2+ has a metastable ground state, in which Pb 3 2+ has isosceles shape (bond lengthR=3.2 Å, bond angle θ=124°) and a positive binding energyE B =3.4 eV. The activation barrier against dissociation into Pb 2 + + Pb+ is 0.13 eV, yielding a very long lifetime. This is in agreement with recent experiments [1] in which the lifetime of Pb 3 2+ was determined to be at least 10?6 s. Comparison with self consistent Hartree-Fock calculations shows that the metastability of Pb 3 2+ is due to electronic correlations within the paramagnetic ground state.  相似文献   

14.
In a previous work the equilibrium geometrical and electronic structures of Xe n + clusters had been established using a non-empirical model hamiltonian. The same model is used to determine the energetic barriers between the nearly degenerate isomers; the movement of the neutral atoms around the Xe 3 + or Xe 4 + ionized linear cores are quite easy (ΔE?0.9 kcal/mole), the changes from a Xe 3 + to a Xe 4 + core are more difficult (ΔE?2.0 kcal/mole). The energetically possible fissions from a vertical photoionization \(Xe_n \xrightarrow{{h v}}Xe_n^{v + } \to Xe_p^ + + Xe_{n - p} \) forn≦19,p=1–9 and 12–14 and mass exchanges Xe p + +Xe q →Xe p+m + +Xe q?m (m=1,2,3) from relaxed Xe p + clusters are given forp+m≦9 and 12–14 andq≦19. Surprisingly the reverse reactions are shown to occur for some values ofp andq. Numerous processes lead to Xe 13 + , which is especially stable.  相似文献   

15.
Manganese cluster ions Mn k + (k?60) have been produced by 7 keV Xe ion bombardment and analyzed by a double-focusing mass spectrometer. Discontinuous variations of intensity are found atk=5, 14, 16, 29, 34, 45 and 54. Most of these magic numbers coincide with or differ by only one from those observed in Ar k + . The similarity in magic numbers between Mn k + and Ar k + indicates that the bonding nature in the charged Mn clusters is similar to that in the charged Ar clusters; The polarization force between a positive ion in the center of a cluster and surrounding neutral atoms is dominant binding force.  相似文献   

16.
The isomerization of linear C3H 3 + in its reaction with acetylene to cyclic C3H 3 + was studied with a quadrupole ion trap mass spectrometer. The reaction of linear C3H 3 + with 13C2H2 shows that isomerization takes place via a [C5H 5 + ]* activated complex that is unstable relative to disproportionation back into the cyclic and linear forms of C3H 3 + and acetylene. The formation of carbon-13 labeled cyclic and linear C,Hi indicates that isomerization involves skeletal exchange. Collisional stabilization of the [C5H 5 + ]* collision complex was achieved at a helium pressure of approximately 1 mtorr.  相似文献   

17.
Picosecond multiphoton ionization of (NO)mArn clusters produced in a supersonic expansion of NO/Ar gas mixtures has been studied using time-of-flight mass spectrometry. Two-photon ionization with 266 nm photons show that dilute gas mixtures (1% NO/Ar) yield clusters limited to m≤7, but with as many as 37 argon atoms. Magic numbers are observed for NO+Ar12, NO+Ar18, (NO) 2 + Ar17, NO+Ar22, and (NO) 2 + Ar21 and are understood in terms of solvation of the NO+ and (NO) 2 + by argon in icosahedral arrangements. Four-photon ionization with 532 nm light produces dissociation of the clusters to yield only NO+Arn with n up to 54. This distribution exhibits an additional magic number at n=54, consistent with the completion of a second solvation sphere about the NO+. The known wavelength dependence for photodissociation of (NO) 2 + and (NO) 3 + and comparison of MPI spectra obtained with 266, 355, and 532 nm light indicate that the dissociation is occurring in the cluster ions.  相似文献   

18.
Some recent results about Ge p C n + ions (p=1, 2;n < 6) produced in laser microprobe mass analyser experiments (LAMMA) show very marked alternations in the emission intensities I(Ge p C n + ) as a function of then andp parities. I(Ge p C n + ) are maxima for evenn. Thus, intensity maxima occur when the total atom numberm of the aggregates is odd for GeC n + (m=n+1) and even for Ge2C n + (m=n+2). As a result, GeC n + ions seem to behave as C m + ions, whereas the behaviour of Ge2C n + ions is quite similar to that of Ge p + ions formed in SIMS or vaporization experiments on pure germanium. It is well known (correspondence rule) that the parity effect in the emissions corresponds to alternations in the ion stabilities. These results are analysed from a model built in Hückel approximation with hybridization. Forp=1, the clusters are assumed to be insp hybridization as for C m + ions, hence with linear shapes, and forp=2, they would rather be insp 2 orsp 3 hybridization as for Ge p + ions. Relative stabilities and distributions of the energy levels of the aggregates are then calculated. The relative stabilities given for Ge p C n + by this model show maxima for evenn as in experiments, and we have thus a good agreement between our calculation results and the experimental data. Moreover, we found that Ge2C n + would rather be insp 3 hybridization, that is under three dimensional shapes.  相似文献   

19.
The gas phase association of CH3 with the HAr2 cluster to form a vibrationally/rotationally excited CH 4 * molecule is used as a model to study microscopic solvation dynamics. A potential energy surface for the reactive system is constructed from a previously fitted H + CH3 ab initio potential and 12-6 Lennard-Jones Ar-Ar, Ar-C, and Ar-H potentials. Classical trajectory calculations performed with the chemical dynamics computer program VENUS are used to investigate the CH3 + HAr2 → CH 4 * + Ar2 reaction dynamics. Reaction is dominated by a mechanism in which the CH3 “strips” the H-atom from HAr2 during large impact parameter collisions. For a large initial relative translational energy the CH3 + HAr2 → CH 4 * + Ar2 cross section is the same as that for H + CH3 association, so that HAr2 acts like a “heavy” H-atom. However, at a low initial relative translational energy, the long-range Ar2—CH3 attractive potential apparently makes the CH3 + HAr2 association cross section larger than that for H + CH3. Partitioning of energy to the CH 4 * and Ar2 products is consistent with a stripping mechanism. The initial and final relative translational energies are nearly identical and the CH 4 * rotational energy is controlled by the initial CH3 rotational energy. The velocity and orbital tilt scattering angles, θ(v i ,v f ) and θ(l i ,l f ), respectively, are consistent with the stripping mechanism. On average only a small amount of the product energy is partitioned to Ar2 vibration/rotation and CH 4 * + Ar2 relative translation.  相似文献   

20.
This work reports the principle, advantage, and limitations of analytical photoion spectroscopy which has been applied to dissociative photoionization processes for diatomic molecules such as H2, N2, CO, and NO. Characteristic features observed in the differential photoion spectra are summarized with a focus on (pre)dissociation of(i) multielectron excitation states commonly observed in the inner valence regions,(ii) shape resonances, and(iii) doubly charged parent ions. Possible origins for negative peaks in the differential spectra are discussed. This spectroscopy is applied to the reported photoion branching ratios for D2 (and H2 at high energies). The main findings are as follows: (1) The direct dissociation of theX 2Σ g + (1sσ g ) state of D 2 + , the two-electron excited state1Σ u + (2pσ u 2sσ g ) of D2, and the2Σ u + (2pσ u ) state of D 2 + appear clearly in the differential spectrum, as previously observed for H2. (2) Decay of H 2 + (D 2 + ) to H+ (D+) above 38 eV is due to the direct dissociation of highly excited states of H 2 + (D 2 + ) such as the2Σ g + (2sσ g ) and high-lying Rydberg states converging on H 2 2+ (D 2 2+ ). (3) In the ionization continuum of H 2 2+ (D 2 2+ ) peculiar dissociation pathways are observed. The differential photoion spectra for O2 derived from the reported photoion branching ratios are also presented. The (pre)dissociation of theb 4Σ g ? ,B 2Σ g ? , III2Π u ,2Σ u ? , and2,4Σ g ? states of O 2 + appears as the corresponding positive values in the spectra in accord with previous observations. Some other dissociation pathways possibly contributing to the spectra are discussed including dissociative double ionization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号