首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We calculate potential energies for charged and neutral jellium clusters which fragment in two pieces, in the framework of the liquid drop model plus Strutinsky shell corrections obtained from the two-centre harmonic oscillator. We consider the symmetric fragmentation of Na 4 + 2 + , Na 1 + 8 + , and Na38. Good agreement is found with results obtained by self-consistent methods, which are much more involved.  相似文献   

2.
The potential energy curves of the Na 19 + /Na quasimolecular (Jellium—Atom)+ system determined by Guissani and Sidis [3] are used to calculate the vibrational energy levels of a sodium atom stuck to a Na 19 + Jellium-like cluster and to determine excitation and charge transfer cross sections in Na 19 + + Na collisions in the 0.2 107 cm/s < v < 1.5 107 cm/s velocity range.  相似文献   

3.
Using a statistical shell-model, the equilibrium internuclear distances and total molecular energies have been computed for Li 2 + , Li2, Na 2 + and Na2. The results are in good agreement with experimental data.  相似文献   

4.
Fragmentation of sodium cluster ions (Na x + ,x<42) was studied via photoionisation of neutral precursors. Expansions of metal vapor out of cylindrical and conical nozzles yielded supersonic beams with differing cluster compositions. Measurements of photoionisation efficiency curves in the 3–6 eV range for both types of expansion allow quantitative separation of direct ionisation and unimolecular dissociation contributions to specific ion signals. Data for Na 8 + and Na 7 + are analysed to yield lower limits on bond energies. Results obtained for larger clusters are also discussed.  相似文献   

5.
Cluster ions of alloys (Li-Na, Li-Mg) have been produced by a liquid metal ion source (LMIS), and analyzed by mass spectrometry. For the Li-Na system, bimetallic clusters with various compositions were formed, and dominant bimetallic species were Na2Li+, NaLi+, NaLi 2 + and NaLi 8 + with this sequence of ion intensity. These clusters are systems containing 2 or 8 valence electrons except for NaLi+. For the Li-Mg, observed bimetallic clusters were limited to only three species (MgLi+, MgLi 2 + and Mg2Li+), but unexpectedly small multiply charged homonuclear clusters, Mg 2 2+ and Mg 3 2+ , were observed.  相似文献   

6.
Quantum chemical ab initio calculations have been performed for the vertical excitation energies and oscillator strengths of all low-lying electronically excited states of small helium cluster ions, He n + ,n=2, ..., 7. The geometrical structures of the ions were fixed at the equilibrium geometries of the respective ground states, for He 4 + and He 5 + also one alternative structure was considered. The low-lying excited states can be classified into two categories: the electronic transition can occur either within the central He 2 + or He 3 + unit or from the peripheral weakly bound He atoms to this unit. The latter transitions are very weak (f≈0.001), closely spaced, with vertical excitation energies of about 5.7 eV. The He 2 + and He 3 + units have strong transitions at 9.93 and 5.55 eV, respectively; these transitions are only slightly blue-shifted if He 2 + or He 3 + are placed as “chromophores” into the centre of a larger He n + cluster. The large difference in the vertical excitation energy of the strong transition should enable an experimental decision of the question whether the cluster ions have He 2 + or He 3 + cores.  相似文献   

7.
Using a one-center-method, treating the inner shells statistically, the valence-shell, however, by quantum mechanics, the equilibrium internuclear distances and total molecular energies have been computed for CH4, SiH4, GeH4, SnH4, PbH4, BH 4 ? , AlH 4 ? , GaH 4 ? , InH 4 ? , TlH 4 ? , NH 4 + , PH 4 + , AsH 4 + , SbH 4 + , and BiH 4 + . The results are in good agreement with experimental data as well as with theoretical values.  相似文献   

8.
The formation of cluster ions when hydrogen molecular ions H 2 + and H 3 + are injected into a drift tube filled with helium gas at 4.4 K has been investigated. When H 2 + ions are injected, cluster ions HHe x + (x≦14) are produced. No production of H2He x + ions is observed. When H 3 + ions are injected, cluster ions HHe x + (x≦14) are produced as well as H3He x + (x≦13), and very small signals corresponding to H2He x + (3≦x≦10) are observed. Information on the stability of HHe x + and H3He x + is derived from the drift field dependence of the cluster size distributions. The cluster sizex=13 is found to be a magic number for HHe x + , and for H3He x + ,x=10 and 11.  相似文献   

9.
Rare gas ions Ne+, Ar+ and Kr+ are injected into a drift tube which is filled with helium gas and cooled by liquid helium. Helium cluster ions RgHe x + (Rg=Ne, Ar and Kr,x≦14) are observed as products. Information regarding the stability of RgHe x + is obtained from drift field dependence of the size distribution of the clusters, and magic numbers are determined. The magic numbers arex=11 and 13 for NeHe x + andx=12 for ArHe x + and KrHe x + . NeHe x + , Ar+ and Kr+ are proposed as the core ions for NeHe 13 + , ArHe 12 + and KrHe 12 + , respectively.  相似文献   

10.
Simulation of fragments of potential energy surface for systems CH4 + CBr 3 + , CH4 + CBr 3 + AlBr 4 ? , CH4 + CCl 3 + AlCl 4 ? , and CH4 + CCl 3 + Al2Cl 7 ? was performed by DFT-B3LYP and DFT-PBE methods. The important role of nucleophilic assistance in methane halogenation by these superelectrophiles was confirmed. These reactions occur with a synchronous hydride transfer from methane to the electrophile within the cyclic transition states in linear C-H-C fragment of the rings and a generation of a C-Hlg bond between the carbon atom of the arising methyl group and the halogen atom of the electrophile. The nucleophilic assistance from the unshared electron pair of this halogen atom provides the lowering of the potential barriers to methane halogenation by complexes CBr 3 + AlBr 4 ? , CCl 3 + AlCl 4 ? , and CCl 3 + Al2Cl 7 ? to the values of the order of 20 kcal mol?1. These essential features of the mechanism of methane halogenation are independent of the halogen nature and are retained on going from the model electrophiles to the real ones.  相似文献   

11.
Reaction dynamics of sodium cluster ions, Na n + (n = 2–9), in collision with molecular oxygen, O2 was investigated by measuring the absolute dissociation cross sections and the branching fractions by using a tandem mass spectrometer equipped with several octapole ion guides. The mass spectrum of the product ions show that the dominant reaction channels are production of oxide ions, NakOi (i =1, 2), and intact ions, Na p + (p < n). With increase in the collision energy, the cross section for the production of the oxide ions decreased, while that for the production of the intact ions increased. The collision-energy dependences of the cross section for the oxide formation reveals that electron harpooning from the molecule to Na n + preludes the oxideion formation. On the other hand, the collision-energy dependences of the cross sections for the intact ion formation is explained by a hard-sphere-collision model similar to the collisional dissociation of Na n + by rare-gas impact.  相似文献   

12.
Mass-selected antimony cluster ions Sb n + (n = 3-12) and bismuth cluster ions Bi {ntn} + (n = 3-8) are allowed to collide with the surface of highly oriented pyrolytic graphite at energies up to 350 eV. The resulting fragment ions are analysed in a time-of-flight mass spectrometer. Two main fragmentation channels can be identified. At low impact energies both Sb n + and Bi n + cluster ions lose neutral tetramer and dimer units upon collision. Above about 150 eV impact energy Sb 3 + becomes the predominant fragment ion of all investigated antimony clusters. The enhanced stability of these fragment clusters can be explained in the framework of the polyhedral skeletal electron pair theory. In contrast, Bi n + cluster scattering leads to the formation of Bi 3 + , Bi 2 + and Bi+ with nearly equal abundances, if the collision energy exceeds 75 eV. The integral scattering yield is substantially higher in this case as compared to Sb n + clusters.  相似文献   

13.
Fission of doubly charged silver clusters is investigated by the method of shell corrections. The following fission events are considered: Ag 22 2+ → Ag n + + Ag 22 ?n + , (n=11, 10, 9, 8); Ag 21 2+ → Ag n + + Ag 21 ?n + , (n=10, 9, 8, 7); Ag 18 2+ → Ag n + + Ag 18 ?n + , (n=9, 8, 7, 6). It is found that the shell correction energy is comparable to or larger than the deformation energy of the liquid drop. Threshold energies for the fission events are calculated and compared with the experimental abundance spectra obtained by Katakuse et al. (1990). Correspondence between the calculated threshold energies with the shell corrections and the experimental abundance is very good, showing products from lower threshold fission channels yield more abundance. The threshold energies without the shell corrections are almost constant irrespective of the fission channels and cannot explain the experimental abundance. Abundance of some products are too small to be accounted for only by the threshold energies. The low abundance of those products may be explained by the presence of competing fission channels that have similar minimal energy paths. It is found in fission of Ag 18 2+ that the shell correction overwhelms the Coulomb energy and the fission channel to Ag8 + Ag 10 2+ is preferred over the fission channel to Ag 8 + + Ag 10 + .  相似文献   

14.
The method of angular resolved elastic scattering has been used to achieve a size selection of neutral sodium clusters. After the scattering process the clusters are ionized by single photon ionization with various laser energies and detected by a time-of-flight mass spectrometer. The elastic scattering of Na2 by Ne serves as a test for the experimental setup. Angular dependence of scattered sodium clusters ionized with 308 nm shows a significant amount of fragmentation of the neutral Na6 to Na9 clusters which are observed in the Na 5 + and Na 6 + ion channels.  相似文献   

15.
The electronic and geometric structures of M4NO 4 + compounds (M = Li, Na, K) in classical and nonclassical isomeric forms were studied by the ab initio (MP2(full)/6-311+G**) and density functional theory (B3LYP/6-311+G**) methods. For all M atoms, structurally stable nonclassical isomers were found with octacoordinated nitrogen atoms and tetracoordinated oxygen atoms. For Li4NO 4 + , the classical structure with the tetracoordinated nitrogen atom is energetically more stable, whereas nonclassical structures with the octacoordinated nitrogen center are more stable for Na4NO 4 + and K4NO 4 + .  相似文献   

16.
Partial volumes $\bar V^0$ of amino acids in aqueous NH4Cl and NaCl solutions are discussed. The salts have different effects on water structure. The contributions of the charged NH 3 + and COO? groups of amino acids are found. Structural characteristics of hydrated complexes are calculated: partial volumes of water inside and outside the hydration sphere and hydration numbers. The same value of $\bar V^0$ (NH 3 + , COO?) is achieved at a higher NH4Cl concentration. The two salt systems with the same $\bar V^0$ (NH 3 + , COO?) have similar values of the partial volumes of water and hydration numbers.  相似文献   

17.
Low energy ion beam techniques have been used to perform a detailed study of the reactions of Al 25 + and Si 25 + with a range of simple molecules (D2, CH4, O2, C2H4, CO and N2). The reactions were studied over a center of mass collision energy range from 0.2eV up to 7eV. Activation barriers for chemisorption onto the clusters were deduced from the experimental results. The activation barriers for chemisorption on Al 25 + and Si 25 + are generally similar and show a qualitative correlation with the electronic properties of the reactant molecule. However, the products of the chemical reactions of Al 25 + and Si 25 + which result from cluster fragmentation are quite different. Si 25 + shows a tendency to undergo fission as observed in a number of recent studies of the dissociation of the bare clusters.  相似文献   

18.
A method is proposed for the selective photometry determination of perchlorates in potable water with a detection limit of 2×10?3 mg/L is proposed based on the extraction of its ion pair with the astrafloxin cation and absorbance measurements at 540 nm. The following ratios of matrix ions are acceptable (in parentheses): ClO?, ClO 2 ? , ClO 3 ? , BrO 3 ? (500); I? (1000); IO 3 ? (7000); HCO 3 ? , Cl?,SO 4 2? , NO 3 ? , Br?, Na+, K+, Ca2+, Mg2+ (10000). The relative error of determination for ClO 4 ? is 20% in the range 4 × 10-3-1 × 10?2 mg/L and 10% in the range 1 × 10-2–5 × 10?2 mg/L.  相似文献   

19.
The positive, liquid secondary ion (LSI) mass spectra of six cobalt(III) and three chromium(III) (β-diketonates ligand = L?) were examined in a 3-nitrobenzyl alcohol matrix. The complexes of both metals yield clean, matrix-free mass spectra, but there are important differences between them. The cobalt compounds show prominent peaks assignable to the molecular ion, CoL 3 + , of the monomeric chelates, together with abundant dimeric ions, such as Co2L 4 + and Co2L 3 + ; in contrast, chromium complexes show protonated monomers, CrL3H+, in addition to ionized monomers, CrL 3 + , and only minor formation of dimeric ions. The collisionally-activated dissociation (CAD) mass spectrum of Co2L 4 + shows fragmentation to CoL 2 + and Co2L 3 + . That of Co2L 3 + shows fragmentation only to dimeric ions, including Co2L 2 + and, for thienyl or phenyl substituted ligands, to Co2L2Ar+ or Co2LAr+ (Ar = thienyl or phenyl). Neither Co2L 4 + nor Co2L 3 + dissociates to the CoL 3 + ion. The LSI mass spectrum of a mixture of two different cobalt chelates shows dimeric ions containing both types of ligand, which can be explained by ion-molecule reactions in the selvedge region. The differing behaviors of the cobalt and chromium complexes is attributed to the relatively greater stability of the +2 oxidation state for cobalt than for chromium.  相似文献   

20.
This work reports the principle, advantage, and limitations of analytical photoion spectroscopy which has been applied to dissociative photoionization processes for diatomic molecules such as H2, N2, CO, and NO. Characteristic features observed in the differential photoion spectra are summarized with a focus on (pre)dissociation of(i) multielectron excitation states commonly observed in the inner valence regions,(ii) shape resonances, and(iii) doubly charged parent ions. Possible origins for negative peaks in the differential spectra are discussed. This spectroscopy is applied to the reported photoion branching ratios for D2 (and H2 at high energies). The main findings are as follows: (1) The direct dissociation of theX 2Σ g + (1sσ g ) state of D 2 + , the two-electron excited state1Σ u + (2pσ u 2sσ g ) of D2, and the2Σ u + (2pσ u ) state of D 2 + appear clearly in the differential spectrum, as previously observed for H2. (2) Decay of H 2 + (D 2 + ) to H+ (D+) above 38 eV is due to the direct dissociation of highly excited states of H 2 + (D 2 + ) such as the2Σ g + (2sσ g ) and high-lying Rydberg states converging on H 2 2+ (D 2 2+ ). (3) In the ionization continuum of H 2 2+ (D 2 2+ ) peculiar dissociation pathways are observed. The differential photoion spectra for O2 derived from the reported photoion branching ratios are also presented. The (pre)dissociation of theb 4Σ g ? ,B 2Σ g ? , III2Π u ,2Σ u ? , and2,4Σ g ? states of O 2 + appears as the corresponding positive values in the spectra in accord with previous observations. Some other dissociation pathways possibly contributing to the spectra are discussed including dissociative double ionization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号