首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Simultaneous multiple-electron capture and multiple ionization is studied for collisions of highly stripped ionsA q+ with rare gas atomsB=He, Ne, Ar, Kr and Xe. At a specific energy of 1.4 MeV/u coincidence measurements were conducted distinguishing between pure ionization, stripping and capture of up to four electrons by projectiles in charge states fromq=6 up toq=48. The coincident charge-state distributions of target recoil ionsB i+ range fromi=1 up toi=19 (in few cases). For highly charged projectiles the relative fractions of recoil ions for concomitant electron capture and ionization are found to be nearly independent of projectile charge or species. Average charge states 〈i〉 of the recoil ions produced by loss respectively capture ofk electrons (k=?2, ?1, 0, 1, 2, 3, 4) from/into the projectile ion were determined. Their systematic dependences onk, on the target atomic number and the projectile ion charge are discussed. A calculation of partial cross sections for multi-electron collision processes in the He target atoms using unitarized first order perturbation theory for impact parameter dependent probabilities and an independent-electron picture is presented and discussed on the basis of the experimental data.  相似文献   

2.
This paper describes our finding that in slow collisions of Kr27+ projectiles with neutral Ne, Ar and O2 atoms/molecules there is a significant target dependence in the spectra of X-rays originating from electron capture. We also present results of a classical trajectory Monte-Carlo (CTMC) calculation that quantifies the different initial electronic state (n,l) distributions of the captured electrons for these three target gasses.  相似文献   

3.
Ab initio SCF MO calculations using a contracted double zeta basis set of 168 gaussian type functions were performed on TCNQ+, TCNQ, TCNQ? and TCNQ2?. The ionisation potentials obtained from total energy differences are generally 0.25-0.50 eV higher than the corresponding negative orbital energies from the TCNQ calculation and in satisfactory agreement with experimental results. The energy of the disproportionation reaction 2TCNQ?-TCNQ+TCNQ2? is calculated to be 4.62 eV. The charge distributions as measured by the gross atomic populations generally deviate from those obtained in earlier π-electron calculations as a consequence of taking the σ-electron distribution into account. The atomic charges are in good agreement with the limited experimental data available.  相似文献   

4.
Laser-desorbed peptide neutral molecules were allowed to react with Fe+ in a Fourier transform mass spectrometer, using the technique of laser desorption/chemical ionization. The Fe+ ions are formed by laser ablation of a steel target, as well as by dissociative charge-exchange ionization of ferrocene with Ne+. Prior to reaction with laser-desorbed peptide molecules, Fe+ ions undergo 20–100 thermalizin collisions with xenon to reduce the population of excited-state metal ion species. The Fe+ ions that have not experienced thermalizing collisions undergo charge exchange with peptide molecules. Iron ions that undergo thermalizing collisions before they are allowed to react with peptides are found to undergo charge exchange and to form adduct species [M + Fe+] and fragment ions that result from the loss of small, stable molecules, such as H2O, CO, and CO2, from the metal ion-peptide complex.  相似文献   

5.
We report new measurements of the absolute electron-impact double ionization cross sections for Ar and Kr and of the ratios of double-to-single ionization for impact energies from threshold to 200 eV using the crossed electron-beam — fast-atom-beam technique. The work was motivated by the recently highlighted spread of about 30% in the Ar2+/Ar+ ionization cross section ratios obtained by several groups using different experimental techniques. Such a spread is inconsistent with statistical uncertainties of typically 3% or less that were quoted for the various reported ratios. A similar situation exists for Kr where the spread among the recently published Kr2+/Kr+ ionization cross section ratios is about 15%. We made an attempt to identify all potential systematic errors inherent to the fast-beam technique that could affect the measurement of cross section ratios with special emphasis on those systematic errors that could influence the detection of singly and doubly charged product ions differently. We found Ar2+/Ar+ and Kr2+/Kr+ cross section ratios of, respectively 0.066 ±0.007 and 0.087 ±0.008 at 100 eV which confirm earlier measurements using the same experimental technique. The error limits on cross sections ratios measured in our fast-beam apparatus were determined to be at least ±9% for cross section ratios of multiple-to-single ionization for the same target atom and at least ±10% for ratios of single ionization cross sections for different target species. Our error limits are dominated by systematic uncertainties of the apparatus which do not cancel when cross section ratios are measured, since the ratios are obtained under similar, but not identical experimental conditions.  相似文献   

6.
In this paper, we compare ionization and dissociation of a series of singly and doubly protonated peptides, namely leucine enkephalin, bradykinin, LHRH and substance P as induced by collisions with keV H+, He+ and He2+. For all peptides under study, the fragmentation pattern depends strongly on the electronic structure of the projectile ions. Immonium ions, side-chains and their fragments dominate the spectrum whereas fragments due to peptide backbone cleavage are weak or even almost absent for He+. Here, resonant electron capture from the peptide is ruled out and only interaction channels accompanied by much higher excitation contribute. Cleavage of the side-chain linkage appears to be a process alternative to backbone fragmentation occurring after internal vibrational redistribution of excitation energy. Depending on the peptide, this process can lead to the loss of a side-chain cation (leucine enkephalin, LHRH) or a neutral side-chain (substance P).  相似文献   

7.
Experimental studies of collisions of He2+ ions with Ne, Ar, and Kr atoms have been carried out at laboratory kinetic energies in the range 8 ? E1 ? 10 eV. For each collision pair, relative differential cross sections for elastic scattering, and for the formation of He+ by single charge transfer [e.g., He2+ + R = He+ + (R+)*] were measured. Information concerning the initial states of the charge transfer products was also obtained, from measurements of the kinetic energy distributions of the He+ + He = Ne+(2s 2p62S) ± He+(2S), whereas for the other systems, transfer proceeds via a number of channels. The He+-ion kinetic energy measurements indicated that for He2+. Ar both Ar+ both Ar+ and Ar2+ are formed in transfer, and that for He2+, Kr only Kr2+ (and no Kr+) was formed.The differential elastic scattering patterns were analyzed by means of cross section calculations based on an approximate form of the optical model. These calculations indicated that the pronounced shoulders observed in the σel(θ) versus θ curves arose from scattering from an attractive potential well, in the presence of concurrent inelastic scattering. Using parametrized Morse potentials to represent the ground electronic states of (HeNe)2+, (HeAr)2+, and (HeKr)2+, the corresponding well-depth are estimated to be, respectively: 1.0 eV, 2.1 eV and 2.6 eV.  相似文献   

8.
Multiple electron capture plus ionization processes inX i+-Ne collisions (i=6, 12, 20) in the energy regime from 50 keV/amu up to several MeV/amu are studied within a semiclassical quantum statistical (?=0) independent particle model. Good agreement is found with existing experimental data for the production of recoil ions with charges up toq=8.  相似文献   

9.
Dr. Clara Illescas 《Chemphyschem》2023,24(20):e202300307
A computational study of Be4++H(2s, 2p) collisions has been carried out employing the Classical Trajectory Monte Carlo (CTMC) method for the impact energy range from 20 keV/u to 1000 keV/u. The integral n partial cross sections for H(n) excitation and Be3+(n) electron capture and, the total ionization and electron capture cross sections are calculated and compared to recent semiclassical results. A general good agreement is observed for the n partial and total electron capture and ionization cross sections. The comparative study of the three inelastic processes show no significant differences between both excited targets.  相似文献   

10.
Multiply charged poly(ethylene glycol) ions of the form (M+nNa) n+ derived from electrospray ionization have been subjected to reactions with negative ions in the quadrupole ion trap. Mixtures of multiply charged positive ions ranging in average mass from about 2000 to about 14,000 Da were observed to react with perfluorocarbon anions by either proton transfer or fluoride transfer. Iodide anions reacted with the same positive ions by attachment. In no case was fragmentation of the polymer ion observed. In all cases, the multiply charged positive ion charge states could be readily reduced to +1, thereby eliminating the charge state overlap observed in the normal electrospray mass spectrum. With all three reaction mechanisms, however, the +1 product ions were comprised of mixtures of products with varying numbers of sodium ions, and in the case of iodide attachment and fluoride transfer, varying numbers of halogen anions. These reactions shift the mass distributions to higher masses and broaden the distributions. The extents to which these effects occur are functions of the magnitudes of the initial charges and the width of the initial charge state distributions. Care must be taken in deriving information about the polymer molecular weight distribution from the singly charged product ions arising from these ion/ion reactions. The cluster ions containing iodide were shown to be intermediates in sodium ion transfer. Dissociation of the adduct ions can therefore lead to a +1 product ion population that is comprised predominantly of M+Na+ ions. However, a strategy based on the dissociation of the iodide cluster ions is limited by difficulties in dissociating high mass-to-charge ions in the quadrupole ion trap.  相似文献   

11.
Electrospray mass spectra of multiply charged protein molecules show two distinct charge state distributions proposed to correspond to a more highly charged, open conformational form and a lower charged, folded form. Elastic collisions carried out in the radiofrequency-only collision cell of a triple quadrupole mass spectrometer have dramatic effects on the appearance of the mass spectra. The different cross sectional areas of the conformers allow preferential selection of one charge state distribution over the other on the basis of ion mobility. Preferential selection is dependent on the nature and pressure of the target gas as well as the nature of the protein. In the case of positively charged horse heart apomyoglobin (MW 16,951 da), a high charge state distribution centered around (M + 20H)20+ predominates at low target gas pressures and a second distribution centered around (M + 10H)10+ predominates at high target gas pressures. Bimodal distributions are observed at intermediate pressures and, remarkably, charge states between the two distributions are not effectively populated under most of the conditions examined. Hard sphere collision calculations show large differences in collision frequencies and in the corresponding kinetic energy losses for the two conformational states and they demonstrate that the observed charge state selectivity can be explained through elastic collisions.  相似文献   

12.
Ion nanocalorimetry is used to investigate the internal energy deposited into M (2+)(H 2O) n , M = Mg ( n = 3-11) and Ca ( n = 3-33), upon 100 keV collisions with a Cs or Ne atom target gas. Dissociation occurs by loss of water molecules from the precursor (charge retention) or by capture of an electron to form a reduced precursor (charge reduction) that can dissociate either by loss of a H atom accompanied by water molecule loss or by exclusively loss of water molecules. Formation of bare CaOH (+) and Ca (+) by these two respective dissociation pathways occurs for clusters with n up to 33 and 17, respectively. From the threshold dissociation energies for the loss of water molecules from the reduced clusters, obtained from binding energies calculated using a discrete implementation of the Thomson liquid drop model and from quantum chemistry, estimates of the internal energy deposition can be obtained. These values can be used to establish a lower limit to the maximum and average energy deposition. Not taking into account effects of a kinetic shift, over 16 eV can be deposited into Ca (2+)(H 2O) 33, the minimum energy necessary to form bare CaOH (+) from the reduced precursor. The electron capture efficiency is at least a factor of 40 greater for collisions of Ca (2+)(H 2O) 9 with Cs than with Ne, reflecting the lower ionization energy of Cs (3.9 eV) compared to Ne (21.6 eV). The branching ratio of the two electron capture dissociation pathways differs significantly for these two target gases, but the distributions of water molecules lost from the reduced precursors are similar. These results suggest that the ionization energy of the target gas has a large effect on the electron capture efficiency, but relatively little effect on the internal energy deposited into the ion. However, the different branching ratios suggest that different electronic excited states may be accessed in the reduced precursor upon collisions with these two different target gases.  相似文献   

13.
The single-electron capture (SEC) by dichlorocarbene dications with eight different atomic and molecular target gases, CCl 2 2+ + G → CCl 2 + + G+, has been studied by product ion spectroscopy and ion kinetic energy spectroscopy. The experimental data have been interpreted in the framework of a theoretical model mat describes the charge exchange process. Exothermic charge exchange is handled within the Landau-Zener model, whereas endothermic charge exchange is described by the Demkov model. The calculated data reproduce qualitatively the essential features of the experimental results: (1) the appearance of a reaction window centered at an exothermicity in the 4–4.5-eV range, (2) the lower SEC cross sections for endothermic charge exchange, (3) the wider internal energy distributions obtained for CCl 2 + in the endothermic regime than in the exothermic one, which results in larger dissociation yields, (4) the excitation of molecular targets that accompany their ionization in the SEC process, and (5) the kinetic energy released on the CCl+ + Cl fragments in dissociative SEC.  相似文献   

14.
For the conflictive case of He++H collisions, we present a norm-method optimization of the parameters included in the (often used) two-electron translation factor of Errea et al. As surmised in a previous publication, a strong cut-off is needed at short internuclear distances to prevent the translation factor from marring the properities of the molecular expansion there. With a basis of 16 molecular states, we present the first calculations including translation factors, of total and partial charge exchange and excitation cross sections in He++H collisions, as well as the alignment parameter A20 for hydrogen excitation. Good agreement with experiment is reached up to the energy range where ionization and charge exchange cross sections are comparable.  相似文献   

15.
The coupled variant of double-parameter perturbation theory in the MO LCAO SCF method in the London approximation has been used for the calculation of π-electron current distributions in the molecules of porphin and its derivatives. The chemical shifts of1H-NMR have been computed on the basis of calculations of ring currents and charge distributions. It is shown that π-electron ring currents are responsible for the dominant contribution to the shielding of protons. The theoretical and experimental values of proton chemical shifts are in a good agreement. Chemical shifts of the13C and15N nuclei have also been estimated. Two aromaticity scales are proposed for the compounds under study based on the calculations of the π-electron contribution to the diamagnetic susceptibility and of π-electron currents, respectively.  相似文献   

16.
Single-configuration relativistic Hartree–Fock values of the first ionization potentials for Cu through Kr7+, Ag through I6+, and Au through Pb3+ are computed in “frozen” and “relaxed core” approximations with and without allowance for core polarization. Effects of polarization of the atomic core by the valence electron are included by introducing a polarization potential in the one-electron Hamiltonian of the valence electron. The core polarization potential depends on two parameters, the static dipole polarizability of the core α and the cut-off radius r0, which are chosen independently of the ionization potential data. It is demonstrated that by including the core polarization potential with α and r0 parameters, which are simply chosen instead of being empirically fitted, it is still possible to account, on the average, for at least 70% of the discrepancy between the single-configuration relativistic Hartree–Fock ionization potentials and the experiment, a discrepancy usually ascribed to the contribution of valence-core electron correlations, and to bring the theoretical ionization potentials to an average agreement with experiment of around 1%. It can be concluded from this study that for low and medium Z elements the core polarization dominates for neutral systems or systems in low ionization stages, whereas for highly ionized systems the relativistic effects prevail. For heavy elements, however, the core polarization influence is comparable to the relativistic one only for neutral systems, whereas for ions the relativistic effects are overwhelmingly predominant.  相似文献   

17.
Charge exchange in ion–surface collisions may be influenced by surface adsorbates to alter the charge state of the scattered projectiles. We show here that the positive‐ion yield, observed during ion scattering on metal surfaces at low incident energies, is greatly enhanced by adsorbing electronegative species onto the surface. Specifically, when beams of N+ and O+ ions are scattered off of clean Au surfaces at hyperthermal energies, no positive ions are observed exiting. Partial adsorption of F atoms on the Au surface, however, leads to the appearance of positively charged primary ions scattering off of Au, a direct result of the increase in the Au work function. The inelastic energy losses for positive‐ion exits are slightly larger than the corresponding ionization energies of the respective N and O atoms, which suggest that the detected positive ions are formed by surface reionization during the hard collision event.  相似文献   

18.
19.
We present a theoretical study of charge transfer in H++C60 and He2++C60 collisions using an extension of the molecular time‐dependent method of ion–atom collisions. Energy‐correlation diagrams have been evaluated for the corresponding (C60–H)+ and (C60–He)2+ quasi‐molecules. Single and double charge‐transfer cross sections in C60+He2+ collisions are reported for the first time. The results show that double charge‐transfer cross sections are only one order of magnitude smaller than single charge‐transfer cross sections. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem, 2001  相似文献   

20.
Transition metal cations Co2+, Ni2+ and Zn2+ form 1 : 1 : 1 ternary complexes with 2,2′‐bipyridine (bpy) and peptides in aqueous methanol solutions that have been studied for tripeptides GGG and GGL. Electrospray ionization of these solutions produced singly charged [Metal(bpy)(peptide ? H)]+ and doubly charged [Metal(bpy)(peptide)]2+ ions (Metal = metal ion) that underwent charge reduction by glancing collisions with Cs atoms at 50 and 100 keV collision energies. Electron transfer to [Metal(bpy)(peptide)]2+ ions was less than 4.2 eV exoergic and formed abundant fractions of non‐dissociated charge‐reduced intermediates. Charge‐reduced [Metal(bpy)(peptide)]+ ions dissociated by the loss of a hydrogen atom, ammonia, water and ligands that depended on the metal ion. The Ni and Co complexes mainly dissociated by the elimination of ammonia, water, and the peptide ligand. The Zn complex dissociated by the elimination of ammonia and bpy. A sequence‐specific fragment was observed only for the Co complex. Electron transfer to [Metal(bpy)(peptide ? H)]+ was 0.6–1.6 eV exoergic and formed intermediate radicals that were detected as stable anions after a second electron transfer from Cs. [Metal(bpy)(peptide ? H)] neutrals and their anions dissociated by the loss of bpy and peptide ligands with branching ratios that depended on the metal ion. Optimized structures for several spin states, electron transfer and dissociation energies were addressed by combined density functional theory and Møller–Plesset perturbational calculations to aid interpretation of experimental data. The experimentally observed ligand loss and backbone cleavage in charge‐reduced [Metal(bpy)(peptide)]+ complexes correlated with the dissociation energies at the present level of theory. The ligand loss in +CR? spectra showed overlap of dissociations in charge‐reduced [Metal(bpy)(peptide ? H)] complexes and their anionic counterparts which complicated spectra interpretation and correlation with calculated dissociation energies. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号