首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 617 毫秒
1.
The transfer of an H atom from a ketyl radical (KR) to a nitroxyl radical is the sole reaction occurring between benzophenone or acetone KR and nitroxyl radicals (NR). The rate constants (kH) of the reaction of the KR of substituted benzophenones with the NR-4-hydroxy-2,2,6,6-tetramethylpiperidine-1oxyl and 4-oxo-2,2,6,6-tetramethylpiperidine-1-oxyl in various solvents were measured by the pulse photolysis method. In low-viscosity solvents (up to 1-2 cP), the values of kH are not limited by the diffusion of the reagents. The kH values decrease with increase in the Hammet's -constants of the substituents in the KR and with decrease in the reduction potential of the NR, which indicates a charge transfer from the KR to NR in the transition state of the reaction. A cyclic structure was proposed for the transition state. The reaction is characterized by a low isotopic effect (kH/kD=1.4–1.5). The dependence of log kH on the solvation parameter of the solvent Et(30) is V-shaped in character.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 5, pp. 999–1003, May, 1990.  相似文献   

2.
Kinetics of the interaction of ketyl and neutral semiquinone radicals with dioxygen was studied by the flash photolysis technique. The reactivity of neutral semiquinone radicals in the transfer of a hydrogen atom to O2 is lower than that of ketyl radicals and increases as the reduction ability of the radicals increases, which give evidence for the charge transfer from the radicals to O2 in the transition state of the reaction. The deuterium kinetic isotope effect of the reaction (up to 2.6) suggests considerable weakening of the O−H bond of the seminquinone radical in the transition state. A cyclic structure of the transition state similar to that in the reactions of ketyl radicals with hydrogen atom acceptors is proposed. In aprotic volvents, solvation has essentially no effect on the reactivity of neutral anthrasemiquinone radicals up to solvent nucleophilicityB≈240. In solvents with higher nucleophilicity and in protic solvents, their reactivity drops sharply. Hydrogen atom transfer reactions involving ketyl and neutral semiquinone radicals are shown to involve concerted electron and proton transfers, and to have transition states in which the partial transfer of an electron and a proton from the ketyl or semiquinone radical to an acceptor occurs. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1131–1137, June, 1997.  相似文献   

3.
The rate constants of self-reactions of ketyl radicals of acetophenone in n-heptane [2k = (3.2 ± 0.5) × 109 M?1 s?1] and diphenylaminyl radicals in toluene [2k = (3.3 ± 0.5) × 107 M?1 s?1] have been determined at 298 K using the flash photolysis technique. The rate constant of ketyl radicals is equal to the calculated diffusion constant and, therefore, this reaction is diffusion-controlled. The aminyl radical recombination rate is independent of the viscosity of the toluene/vaseline oil binary mixture (0.55 ? η ? 12 cP) and this reaction is activation-controlled. Reactivity anisotropy averaging due to the cage effect has been considered for ketyl and some other radicals. On the basis of the analysis it has been proposed that ketyl recombination involves formation of not only pinacol, but also iso-pinacols.  相似文献   

4.
《Chemical physics letters》1986,129(2):205-210
The lifetime of excited diphenyl ketyl radicals is lengthened by deuterium substitution. The largest effect is observed by substitution at the hydroxylic position; for example, the lifetimes are 3.9, 4.2, 8.7 and 10.5 ns for (C6H5)2COH, (C6D5)2COH, (C6H5)2COD and (C6D5)2COD, respectively, in toluene or toluene-d8 at room temperature. Deuterium substitution in the solvent has no effect other than providing a different atom for the hydroxylic position in the ketyl radical.  相似文献   

5.
The reactivity of RO 2 . peroxide radicals in oxidation reactions depends greatly on specific and nonspecific solvation by the solvent. With increasing dielectric constant () of the medium, the rate constant for the interaction of RO 2 . radicals with methyl ethyl ketone (k2) and the rate constant of the recombination of RO 2 . radicals (k6) increase. The specific solvation of RO 2 . radicals due to hydrogen bonds of water diminishes their reactivity. Equilibrium constants for the solvation of peroxide radicals and all rate constants of chain propagation and termination reactions involving solvated and unsolvated RO 2 . radicals were measured. The change in composition of the oxidation products when methyl ethyl ketone was diluted with benzene or water is caused by nonspecific and specific solvation by the solvent affecting the chain propagation reaction.  相似文献   

6.
The kinetics of 1,1-dimethylpropyl peroxy radicals recombination in polar solvents—water, methanol, and their mixtures—was studied by EPR spectroscopy in combination with the stopped-flow method, and the rate constants of this reaction were determined. Peroxyl radicals were generated by mixing solutions of Ce4+ sulfate and 1,1-dimethylpropyl hydroperoxide. The observed EPR signal of the peroxyl radical is a singlet with a g-factor of 2.015 ± 0.001, and a line width of ΔH = (1.36 ± 0.02) × 10?3 T for methanol and ΔH = (9.7 ± 0.2) × 10?4 T for water. The measured rate constants of (CH3)2C(O2·)CH2CH3 radical recombination at 298 K are 2kt = (3.9 ± 0.4) × 104 L mol?1 s?1 for water and 2kt = (5.2 ± 0.5) × 103 L mol?1 s?1 for methanol. A linear relationship between ln(2kt) and the Kirkwood function (ε?1)/(2ε + 1), where e is the dielectric constant of the medium, has been established, indicating an important role of nonspecific solvation in the recombination of tertiary peroxyl radicals.  相似文献   

7.
A combination of microcalorimetry, the rotating sector method, and ESR at 323 K in the environment of 10 solvents of different polarities was used to measure rate constants of addition of hydroperoxide radicals () to π bonds of trans‐1,2‐diphenylethylene and trans,trans‐1,4‐diphenylbutadiene‐1,3 (k2) and disproportionation rate constants of these radicals (k3). With increasing dielectric constant of the medium, k2 values increase from 69 to 410 M−1 · s−1, and k3 values almost do not change and are in the range of (1.0 ± 0.2) × 108 M−1 · s−1. A linear dependence of logarithm values of rate constants from the dielectric constant of the medium in the coordinates of the Kirkwood–Onsager equation was found that allows to make a conclusion about the effect of nonspecific solvation in the studied systems. The quantum‐chemical analysis (NWChem, DFT B3LYP/6‐311G**) of the detailed mechanism for addition shows that the influence of the medium polarity reflects the superposition of the effects of nonspecific and specific solvation. The scale of the polar effect will depend on how different solvation energies of the transition and the initial reaction complexes. If a value of the solvation energy of the transition complex is larger than the solvation energy of the initial reaction complex, then the reaction rate should increase with an increase of the solvent's polarity and decrease otherwise.  相似文献   

8.
The kinetics of fast elementary recombination of neutral ketyl radicals of benzophenone and its four derivatives (BPH?), the dismutation of benzophenone radical anions, the disproportionation between BPH? and stable nitroxyl radicals, ( ), and the electron transfer have been investigated in both individual solvents and binary mixtures of different viscosities. Reaction (1) for unsubstituted BPH in water, water glycerol, and n-hexane is controlled by diffusion with 2k1 ? kdiff. In aliphatic alcohols and toluene, which form solvation complexes with BPH?, reaction (1) is diffusion-enhanced and activation-controlled, respectively, with 2k1 < kdiff. In a viscous solvent such as 1-propanol–glycerol mixture (100 ? η ? 450 cP) reaction (1) is diffusion-controlled. Reaction (2) in alkaline 1-propanol and alkaline 1-propanol–glycerol mixture is activation controlled. The rates of reactions (3) and (4) for benzophenone radicals and nitroxyl radicals of the imidazoline series decrease as the viscosity of the water–glycerol and 1-propanol–glycerol mixtures is increased. The reactions are molecular mobility limited; nevertheless, the numerical values of k3 (k4) are 2–6 times as small as the corresponding kdiff values due to the low steric factor of the reactions (therefore called pseudodiffusion-controlled reactions). The theoretical estimates of k3 (k4) are in good agreement with the experimental results. The elimination of spin forbiddance in the process of radical recombination in viscous solvents is discussed.  相似文献   

9.
Conclusions The rate constants of the reaction between the alkyl radicals of hydrocarbons (R.) and of vinyl monomers (M.) and O2 and stable nitroxyl radicals were determined at 50C. The low-molecular-weight radicals react with O2 (k1) and the (k3) more rapidly than the M. do. For polar R. and M. k1 and k3 are close, and for the nonpolar ones k1>k3.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 11, pp. 2446–2450, November, 1979.The authors express their appreciation to V. A. Golubev for submitting the nitroxyl radicals and A. P. Moravskii for help in running the experiment.  相似文献   

10.
Rate constants for the bimolecular self-reaction of isopropylol radicals [(CH3)2?OH] in various solvents are determined as functions of temperature by kinetic electron spin resonance. For hydrocarbon solvents they are well described by theoretical equations for reactions controlled by translational diffusion if diffusion coefficients of 2-propanol, a constant reaction distance, and a spin statistical factor of 1/4 are applied. Deviations from 2ktD at high diffusion constants agree with trends expected from recent theoretical models. For hydrogen-bonding solvents large negative deviations are observed. They are attributed to steric constraints and slower rotational diffusion of radical–solvent aggregates. The disproportionation-to-combination ratio of isopropylol increases with solvent viscosity. As previously for tert-butyl, this is explained by anisotropic reorientation during encounters. Further, rate data are given for the decarbonylation of the 2-hydroxy-2-methylpropanoyl radical and for several hydrogen abstraction reactions of isopropylol.  相似文献   

11.
A parabolic model of bimolecular radical reactions was used for analysis of the hydrogen transfer reactions of ketyl radicals: >C·OH+R1COR2→>C=O+R1R2C·OH. The parameters describing the reactivity of the reagents were calculated from the experimental data. The parameters that characterize the reactions of ketyl and alkyl radicals as hydrogen donors with olefins and with carbonyl compounds were obtained: >C·OH+R1CH=CH2→>C=O+R1C·HCH3; >R1CH=CH2+R2C·HCH2R3→R2C·HCH3+R2CH=CHR3. These parameters were used to calculate the activation energies of these transformations. The kinetic parameters of reactions of hydrogen abstraction by free radicals and molecules (adelhydes, ketones, and quinones) from the C−H and O−H bonds were compared. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2178–2184, November, 1998.  相似文献   

12.
Regression analysis of the solvent effects on the rate constants of nucleophilic substitution at the phosphoryl group was performed with the use of the empirical parameters of solvent polarity which characterize the ability of the solvents to electrophilic and nucleophilic solvation. The nucleophilic solvation of reagents by solvents, as a rule, favors the phosphorylation reactions. In the phosphorylation reactions of anionic nucleophiles, the electrophilic solvation of anions influences negatively the reactions rates. The phosphorylation of amines by chlorides of phosphorus acids is facilitated by the electrophilic solvation of a separated anion. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 271–274, February, 1998.  相似文献   

13.
Rate constants have been measured in several aqueous/organic solvent mixtures for the addition reaction of Cl2˙? radicals with 2-propen-1-o1 and 2-buten-1-o1 as a function of temperature and with 2, 3-dimethyl-2-butene at room temperature. The rate constants were in the range of 106–109 L mol?1 s?1, the activation energies were relatively low (1–10 kJ mol?1), and the pre-exponential factors varied over the range log A = 7.9 to 9.4. The rate constants (k) decreased (by up to a factor of 30) upon increasing the fraction of organic solvent and log k correlated linearly with the dielectric constant for a given water/organic solvent system, but the lines for the different solvent systems had different slopes. A better correlation of log k was found with a combination of the solvatochromic factor, ET(30), and the hydrogen-bond donor acidity factor, α. This suggests that the rate of reaction is influenced by the solvent polarity and also by specific solvation of the ionic reactant and product. Solvent effect on the reaction of SO4˙? with 2-propen-1-o1 was studied for comparison. © 1993 John Wiley & Sons, Inc.  相似文献   

14.
In the reactions of alkyl-substituted-benzenecarboxylic and -2-hydroxybenzenecarboxylic acids (ArCOOH) with alkyl-substituted phenyl Grignard reagents (RMgX) in the presence of nickel, ketyl radicals Ar? CO?? R are formed. The para substituents (H, Me, Et, Isopr and t-Bu) of R increase the non-equivalence of its ortho protons (a change of a2H = 0.43 mT, a6H = 0.422 mT to 0.435 mT, 0.395mT respectively, on substituting t-butyl for H at position 4). The oxido anion group originating from 2-hydroxybenzenecarboxylic acid has a strong push effect and nearly doubles the unpaired spin density on the phenyl ring R.  相似文献   

15.
[reaction: see text] Ketyl radicals with lignin related structures have been generated by means of radiation chemical and photochemical techniques. In the former studies ketyl radicals are produced by reaction of alpha-carbonyl-beta-aryl ether lignin models with the solvated electron produced by pulse radiolysis of an aqueous solution at pH 6.0. The UV-vis spectra of ketyl radicals are characterized by three main absorption bands. The shape and position of these bands slightly change when the spectra are recorded in alkaline solution (pH 11.0) being now assigned to the ketyl radical anions and a pKa = 9.5 is determined for the 1-(3,4,5-trimethoxyphenyl)-2-phenoxyethanol-1-yl radical. Decay rates of ketyl radicals are found to be dose dependent and, at low doses, lie in the range (1.7-2.7) x 10(3) s(-1). In the presence of oxygen a fast decay of the ketyl radicals is observed (k2 = 1.8-2.7 x 10(9) M(-1) s(-1)) that is accompanied by the formation of stable products, i.e., the starting ketones. In the photochemical studies ketyl radicals have been produced by charge-transfer (CT) photoactivation of the electron donor-acceptor salts of methyl viologen (MV2+) with alpha-hydroxy-alpha-phenoxymethyl-aryl acetates. This process leads to the instantaneous formation of the reduced acceptor (methyl viologen radical cation, MV+*), as is clearly shown in a laser flash photolysis experiment by the two absorption bands centered at 390 and 605 nm, and an acyloxyl radical [ArC(CO2*))(OH)CH2(OC6H5)], which undergoes a very fast decarboxylation with formation of the ketyl radicals. Steady-state photoirradiation of the CT ion pairs indicates that 1-aryl-2-phenoxyethanones are formed as primary photoproducts by oxidation of ketyl radicals by MV2+ (under argon) or by molecular oxygen. Small amounts of acetophenones are formed by further photolysis of 1-aryl-2-phenoxyethanones and not by beta-fragmentation of the ketyl radicals. The high reactivity of ketyl radicals with oxygen coupled with the low rates of beta-fragmentation of the same species have an important bearing in the context of the photoyellowing of lignin containing pulps and papers.  相似文献   

16.
The reaction kinetics of 2-thiophenesulphonyl chloride with anion and neutral nucleophiles was studied in H2O, D2O and in protic solvents-H2O (10% vv) and aprotic solvents-H2O (10% vv) mixtures at 25°. Analysing the rate constants measured in water by Bronsted, Ritchie and Edwards equations the conclusion drawn that, for the nucleophilic order against the sulphonyl sulphur, basicity is of prime importance, although there may well be some dependence on polarizability and solvation. Solvent isotope effects show that the reactions occur by nucleophilic catalysis rather than by a general base mechanism. Water is the solvent in which there is the greater reactivity than in either protic solvents or aprotic-protic mixtures. By solubility measurements and applying Parker's equation the contributions of solvation energies of both reactants and transition states to the free energy of activation are calculated. Solvent effects on nucleophilic reactivities are discussed in terms of S parameters (similar to Ritchie N+ parameters), and by the approach of multiparameter empirical correlations. The data point out that solvation plays a large role on nucleophilic order. A complete comprehension of the problem would require an equation that takes into some account solvent effects. The homogeneous comparison of 2-thiophenesulphonyl chloride data with those of α-disulphone, p-anisyl p-methoxybenzenesulphinyl sulphone and benzenesulphonyl chloride shows that the same factors are involved in driving the nucleophilic reactivity for these compounds.  相似文献   

17.
Rates and thermodynamic data have been obtained for the reversible self-termination reaction: Involving aromatic 2-(4′dimethylaminophenyl)indandione-1,3-yl (I), 2-(4′diphenylaminophenyl)indandione-1,3-yl (II), and 2,6 di-tert-butyl-4-(β-phthalylvinyl)-phenoxyl (III) radicals in different solvents. The type of solvent does not tangibly affect the 2k1 of Radical(I), obviously due to a compensation effect. The log(2k1) versus solvent parameter ET(30) curves for the recombination of radicals (II) and (III) have been found to be V shaped, the minimum corresponding to chloroform. The intensive solvation of Radical (II) by chloroform converts the initially diffusion-controlled recombination of the radical into an activated reaction. The log (2k?1) of the dimer of Radical (I) has been found to be a linear function of the Kirkwood parameter (ε - 1)/(2ε + 1), the dissociation rate increasing with the dielectic constant of the solvent. The investigation revealed an isokinetic relationship for the decay of the dimer of Radical (I), an isokinetic temperature β = 408 K and isoequilibrium relationship for the reversible recombination of Radical (I) with β° = 651 K. For Radical (I) dimer decay In(2k?1) = const + 0.8 In K, where K is the equilibrium constant of this reversible reaction. The transition state of Radical (I) dimer dissociation reaction looks more like a pair of radicals than the initial dimer. The role of specific solvation in radical self-termination reactions is discussed.  相似文献   

18.
The hydrated electron (eaq) and hydroxyl radical rate constants with 18 acrylate-, methacrylate-, crotonate-, fumarate- and maleate esters are discussed. The constants approach the diffusion-controlled limit. k(eaq) and k(OH) change in opposite direction; if k(eaq) is high then k(OH) is small. This tendency is connected with the nucleophilic character of eaq and the electrophilic character of OH, although the site of attack of eaq and OH is different: carbonyl versus vinyl group.  相似文献   

19.
Hydrogen abstraction by 1-phenylethyl radicals (?H) from phenylmethyl-carbinol (HROH) and benzyl alcohol (H2R′OH) has been studied in the liquid phase at 120°C. 1-Phenylethyl radicals have been generated by thermal decomposition of azo-bis-1-phenyl ethane and the formation of ethylbenzene (RH2), acetophenone (RO), and 2,3-di-phenyl butane (R2H2) has been monitored during the reaction. In order to optimize the experimental conditions, a mechanism has been assumed for the various pathways of the disappearance of ?H and by using estimated rate parameters a presimulation was performed. The relative rate constants obtained are: and where kH refers to the hydrogen abstraction while kt is the combination rate coefficient of the radicals ?H.  相似文献   

20.
Hydrolysis reactions of silylurethanes Me3Si(p-XC6H4)NCOOEt (I) with X = Cl, H or Me in aqueous buffer solutions, with pH values from 1.94 to 10.00 were studied.The catalytic rate constants for the acid and base catalysed reactions and for the “non-catalysed” reaction k(H3O+), k(CH3COO?), k(H2PO4?), k(HPO42?), k(NH3), k(OH?) and k0 were evaluated from the pseudo first-order rate constants kexp determined by UV spectroscopy.The Brönsted coefficients for the base-catalysed reactions were obtained from the catalytic rate constants found and the known constants of dissociation K(HB+).The ρ values of the reactions could be derived from the σ constants given by Jaffé.The kientical results obtained are interpreted mechanistically and are believed to also have model character for other nucleophilic substitution reactions with silicon compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号