首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on first-principles calculations, we show that very high-density periodic arrays of Nb4 clusters with both the tetrahedron and quadrangle configurations can be stably absorbed on the Cu(111) and Cu(100) surfaces, with the quadrangle configurations more stable than the tetrahedron ones. The strong covalent bonding between atoms within the Nb4 clusters contributes to the stability of Nb4 adsorptions on the Cu surfaces. The energy barriers for the tetrahedron to the quadrangle-Nb4 on Cu(111) and (100) are around 1.21 eV and 0.94 eV/cluster, respectively. The stable adsorption of high-density Nb4 on these surfaces should have important applications.  相似文献   

2.
The equilibrium geometries, relative stabilities, and electronic properties of Ca2Sin (n = 1-11) clusters have been systematically investigated by using the density function theory at the 6-311G (d) level The optimized geometries indicate that the most stable isomers have three-dimensional structures for n = 3-11. The electronic properties of Ca2 Sin (n = 1-11) dusters axe obtained through the analysis of the natural charge population, natural electron configuration, vertical ionization potential, and vertical electron affinity. The results show that the charges in corresponding Ca2Sin clusters transfer from the Ca atoms to the Sin host. Based on the obtained lowest-energy geometries, the size dependence of cluster properties, such as averaged binding energies, fragmentation energies, second-order energy differences, HOMO- LUMO gaps and chemical hardness, are deeply discussed.  相似文献   

3.
γ-TiAl中Nb和Mo合金化效应的第一性原理研究   总被引:4,自引:0,他引:4       下载免费PDF全文
党宏丽  王崇愚  于涛 《物理学报》2007,56(5):2838-2844
基于密度泛函理论框架下的第一性原理离散变分(DV)和DMol方法研究了4d过渡金属元素在γ-TiAl 中的择优占位行为及其Nb和Mo的合金化效应.转移能的计算结果表明Y,Zr,Nb,Mo在γ-TiAl中有Ti占位倾向,而Tc,Ru,Rh和Pb则表现为Al占位倾向.通过对差分电荷密度、Mulliken轨道集居数以及态密度的分析表明Nb和Mo可以提高杂质元素与其近邻基体元素之间的相互作用和相应原子之间的键合强度,导致较强的固溶强化效应. 关键词: 密度泛函理论 第一性原理 电子结构  相似文献   

4.
The adsorption and reaction of CO on SrTiO3 (100) surface with and without surface oxygen vacancy are investigated by the first-principles calculation based on the density functional theory. The calculated results reveal that the oxygen vacancy site prefers to the activation of the C-O bond. The adsorption energies increase to 1.0855 and 0.3245eV for defect-CO and defect-OC orientations, respectively. Particularly the C-O bond is elongated by about 0.1285 ? in the defect-OC orientation compared with that in the Ti-OC one without surface oxygen vacancies. There is predominantly a chemisorption mechanism between the CO molecule and the surface in the defect-CO orientation.  相似文献   

5.
The geometries, stabilities, and electronic properties of FSin (n=1~12) clusters are systematically investigated by using first-principles calculations based on the hybrid density-functional theory at the B3LYP/6-311G level. The geometries are found to undergo a structural change from two-dimensional to three-dimensional structure when the cluster size n equals 3. On the basis of the obtained lowest-energy geometries, the size dependencies of cluster properties, such as averaged binding energy, fragmentation energy, second-order energy difference, HOMO–LUMO (highest occupied molecular orbital–lowest unoccupied molecular orbital) gap and chemical hardness, are discussed. In addition, natural population analysis indicates that the F atom in the most stable FSin cluster is recorded as being negative and the charges always transfer from Si atoms to the F atom in the FSin clusters.  相似文献   

6.
In this paper, the stable structure and the electronic and optical properties of nitric oxide (NO) adsorption on the anatase TiO2 (101) surface are studied using the plane-wave ultrasoft pseudopotential method, which is based on the density functional theory. NO adsorption on the surface is weak when the outermost layer terminates on twofold coordinated oxygen atoms, but it is remarkably enhanced on the surface containing O vacancy defects. The higher the concentration of oxygen vacancy defects, the stronger the adsorption is. The adsorption energies are 3.4528 eV (N end adsorption), 2.6770 eV (O end adsorption), and 4.1437 eV (horizontal adsorption). The adsorption process is exothermic, resulting in a more stable adsorption structure. Furthermore, O vacancy defects on the TiO2 (101) surface significantly contribute to the absorption of visible light in a relatively low-energy region. A new absorption peak in the low-energy region, corresponding to an energy of 0.9 eV, is observed. However, the TiO2 (101) surface structure exhibits weak absorption in the low-energy region of visible light after NO adsorption.  相似文献   

7.
 基于密度泛函理论的第一性原理方法,计算了硅铍石型和尖晶石型结构BeP2N4的总能量随体积的变化关系。利用Brich-Murnaghan状态方程,通过能量和体积拟合,得到了2种结构的体变模量及其对压强的一阶导数。在压力作用下,BeP2N4的相变是从硅铍石型结构(空间群R-3,No.148)转变到尖晶石型结构(空间群Fd-3m,No.227),计算出的相变点与其它理论值符合得非常好。同时计算了BeP2N4的相对晶格常数a/a0和相对体积V/V0的压缩率,在低压下发现,尖晶石结构BeP2N4的压缩率接近金刚石,进一步计算了不同压力下的体弹模量BH、剪切模量GH、BH/GH和杨氏模量E。此外,对两种结构的BeP2N4的电子态密度和带隙随压强的变化关系进行了计算和分析。结果表明:在压力作用下,上价带顶向费米能级移动,并有一定的展宽。Be—N、P—N键缩短,电子转移增加,导致电荷发生重新分布。  相似文献   

8.
Adsorption and reaction of CO on two possible terminations of SrTiO3 (100) surface are investigated by the first-principles calculation of plane wave ultrasoft pseudopotentiai based on the density function theory. The adsorption energy, Mulliken population analysis, density of states (DOS) and electronic density difference of CO on SrTiO3 (100) surface, which have never been investigated before as far as we know are performed. The calculated results reveal that the Ti-CO orientation is the most stable configuration and the adsorption energy (0.449eV) is quite small. CO molecules adsorb weakly on the SrTiO3 (100) surface, there is predominantly electrostatic attraction between CO and the surface rather than a chemical bonding mechanism.  相似文献   

9.
The structural and electronic properties of the 0.5 ML-terminated allyl mercaptan (ALM)/Si(IO0)-(2 x 1) surface are studied using the density functional method. The calculated absorption energy of the ALM molecule on the 0.5 ML-terminated ALM/Si(IO0)-(2 x 1) surface is 3.36eV, implying that adsorption is strongly favorable. The electronic structure calculations show that the ALM/Si(IO0)-(2 x 1), the clean Si(100)-(2 x 1), and the fully-terminated H/Si(IO0)-(2 ~ 1) surfaces have the nature of an indirect band gap semiconductor. The highest occupied molecular orbital is dominated by the ALM, confirming the mechanism proposed by Hossain for its chain reaction.  相似文献   

10.
The adsorption of H2 on two kinds of Mg3N2(110) crystal surface is studied by first principles. Adsorption sites, adsorption energy, and the electronic structure of the Mg3N2(110)/H2 systems are calculated separately. It is found that H2 is mainly adsorbed as chemical adsorption, on these sites the 1-12 molecules are dissociated and the H atoms tend to the top of two N, respectively, forming two NH, or the H atoms tend to the same N forming one NH2. There are also some physicM adsorption sites. One of the bridge sites of Mg3N2 (110) surface is more favorable than the other sites. On this site, H atoms tend to the top of two N, forming two NH. This process belongs to strong chemical adsorption. The interaction between 1-12 molecule and Mg3N2(110) surface is mainly due to the overlap-hybridization among Hls, N 2s, and N 2p states, covalent bonds are formed between the N and H atoms.  相似文献   

11.
The adsorption characteristics of Cs on GaN (0001) and GaN (0001) surfaces with a coverage from 1/4 to 1 monolayer have been investigated using the density functional theory with a plane-wave uttrasoft pseudopotential method based on first-principles calculations. The results show that the most stable position of the Cs adatom on the GaN (0001) surface is at the N-bridge site for 1/4 monolayer coverage. As the coverage of Cs atoms at the N-bridge site is increased, the adsorption energy reduces. As the Cs atoms achieve saturation, the adsorption is no longer stable when the coverage is 3/4 monolayer. The work function achieves its minimum value when the Cs adatom coverage is 2/4 monolayer, and then rises with Cs atomic coverage. The most stable position of Cs adatoms on the GaN (000i) surface is at H3 site for 1/4 monolayer coverage. As the Cs atomic coverage at H3 site is increased, the adsorption energy reduces, and the adsorption is still stable when the Cs adatom coverage is 1 monolayer. The work function reduces persistently, and does not rise with the increase of Cs coverage.  相似文献   

12.
Adsorption of atomic carbon on 6-Pu(111) surface is investigated systematically using density functional theory with RPBE functional. The adsorption energies, adsorption structures, Mulliken population, work functions, layer and projected density of states are calculated in wide ranges of coverage, which have never been studied before as far as we know. It is found that the hcp-hollow sites is the energetically favorable site for all the coverage range considered. The repulsive interaction is identified, and the adsorption energy decreases with the coverage, while work function increases linearly with the coverage. It is found that the C-Pu interaction is very strong due to the hybridization between the C 2p states and the Pu 5 f , Pu 6p,Pu 6d states of topmost layer Plutonium atoms.  相似文献   

13.
The structure, electronic and magnetic properties of HoSin(n= 1 - 12, 20) clusters have been widely investigated by first-principles calculation method based on density flmctional theory (DFT). From our calculation results, we find that for HoSin(n=1- 12) clusters except n = 7.10, the most stable structures are a replacement of Si atom in the corresponding pure Sin+1 clusters by Ho atom. The doping of Ho atom makes the stability of Si clusters enhance remarkably, and HoSin(n = 2, 5, 8, 11) clusters are more stable than their neighboring clusters. The magnetic moment of Ho atom in HoSin (n = 1 - 12, 20) clusters mainly comes from of electron of tto, and never quenches.  相似文献   

14.
The photoabsorption spectra of (SiO2)n (n = 2-5) clusters [including isomers (D3h, D2d) structures of (SiO2)3 and (C2v, D2h, D4h) structures of (SiO2)4] are calculated by using time-dependent density-function theory. The equilibrium geometries, the binding energy, the gap between the highest occupied and lowest unoccupied molecular orbitals and vertical ionization potential for corresponding structures are computed using several methods with different types of the basis functions. It is found that the polarizability functions are necessary for the basis functions when optimize the structures of silicon oxide clusters. For different geometries of various clusters and the related isomers, their spectra are very different. Meanwhile, the comparison between using local-density generalized-gradient approximations for exchange-correlation potentials shows that both the calculated spectra present the same spectral feature. We suggest that the calculated photoabsorption spectra could be taken as a tool to elucidate the isomers and dusters structure.  相似文献   

15.
A systematic study on the structures and electronic properties of copper clusters has been performed using the density functional theory. In the calculation, there are many isomers near the ground state for small copper clusters. Our results show that the three-dimensional isomers of copper clusters start from Cu7 cluster and then show a tendency to form more compact structures. The results of the formation energy and the second derivative of binding energy with duster size show that besides N = 8, N =11 is also a magic number. Furthermore, it is the first time to find that the ground state of 11-atom clusters is a biplanar structure as same as the 13-atom cluster. The clear odd-even alternation as cluster size for the formation energy indicates the stability of electronic close shell existed in the range studied.  相似文献   

16.
贾婷婷  高涛  张云光  雷强华  罗德礼 《中国物理 B》2011,20(11):113601-113601
The equilibrium structures and the electronic, spectroscopic and thermodynamic properties of small Pun (n=2-5) molecules are systematically investigated using the methods of general gradient approximation (GGA) of density functional theory (DFT). The results show that the bond length of the lowest-energy structure of Pu2 is 2.578 AA. The ground state structure of Pu3 is a triangle with D3h symmetry, whereas for Pu4, the ground state structure is a square (D4h) and the spin polarization of 16 for molecule Pu5 with square geometry (D4h) is the most stable structure. For the ground state structures, the vibrational spectra as well as thermodynamic parameters are worked out. In addition, the values for the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) along with the energy gap of all the Pu2-5 structures are presented. The relevant structural and chemical stabilities are predicted.  相似文献   

17.
This paper performs first-principles calculations to study the structural, mechanical and electronic properties of the spinels ZnA1204, ZnGa2O4 and ZnCr2O4, using density functional theory with the plane-wave pseudopotential method. Our calculations are in good agreement with previous theoretical calculations and the available experimental data. The studies in this paper focus on the evolution of the mechanical properties of ZnAl2O4, ZnGa2O4 and ZnCr2O4 under hydrostatic pressure. The results show that the cubic phases of ZnAl2O4, ZnCa2O4 and ZnCr2O4 become unstable at about 50 GPa, 40 GPa and 25 GPa, respectively. From analysis of the band structure of the three compounds at equilibrium volume, it obtains a direct band gap of 4.35 eV for ZnA1204 and 0.89 cV for ZnCr2O4, while ZnGa2O4 has an indirect band gap of 2.73 eV.  相似文献   

18.
The geometries and electronic properties of Fe(MgO)n are systematically investigated by the density functional theory. The results show that the doped Fe atom is prone to bond with the O atom, and Fe almost does not disturb the frame of (MgO)n. The second-order energy difference, the fragmentation energies and the electron amnities show that Fe(MgO)4 and Fe(MgO)6 possess relatively higher stabilities. The HOMO-LUMO gaps of Fe(MgO)n decrease obviously as compared with (MgO)n. Almost equal unpaired electrons of the 3d state of the Fe atom in Fe(MgO)n result in a nearly equal magnetic moment of Fe(MgO)n.  相似文献   

19.
First-principles calculations based on spin density functional theory are performed to study the spin-resolved electronic properties of ZnO codoped with Cu and N. (Cu, N)-codoped ZnO exhibits magnetism, and the total magnetic moment mainly originates from the p-d hybridization of Cu-N and Cu-O as well as p-p coupling interaction between N and O at the Fermi level. The Zn34Cu2O35N1 favors energetically a ferromagnetic ground state due to the existence of stable Cu-N-Cu complex. These results imply that the (Cu, N)-codoped ZnO is a promising dilute magnetic semiconductor free of magnetic precipitates, which could broaden the horizon of currently known magnetic systems.  相似文献   

20.
This paper computationally investigates the RhSin (n = 1 6) clusters by using a density functional approach. Geometry optimizations of the RhSin (n = 1 6) clusters are carried out at the B3LYP level employing LanL2DZ basis sets. It presents and discusses the equilibrium geometries of the RhSin (n = 1-6) clusters as well as the corresponding averaged binding energies, fragmentation energies, natural populations, magnetic properties, and the energy gaps between the highest occupied molecular orbital and the lowest unoccupied molecular orbital. Theoretical results show that the most stable RhSin(n = 1-6) isomers keep an analogous framework of the corresponding Sin+1 clusters, the RhSi3 is the most stable cluster in RhSin (n = 1-6) isomers. Furthermore, the charges of the lowest-energy RhSin (n = 1-6) clusters transfer mainly from Si atom to Rh atom. Meanwhile, the magnetic moments of the RhSin(n = 1-6) arises from the 4d orbits of Rh atom. Finally, compared with the Sin+1 cluster, the chemical stability RhSin clusters are universally improved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号