首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 0 毫秒
1.
The application of laboratory-made zirconium-modified silica gels (Zr-silicas) as cation-exchange stationary phases to ion chromatography with conductimetric detection (IC–CD) for common mono- and divalent cations (Li+, Na+, NH4+, K+, Mg2+ and Ca2+) was carried out. Zr-silicas were prepared by the reaction of the silanol group on the surface of silica gel with zirconium tetrabutoxide (Zr(OCH2CH2CH2CH3)4) in ethanol. Zr-silica adsorbed on 10 mg zirconium g−1 silica gel was a suitable cation-exchange stationary phase in IC–CD for the separation of these mono- and divalent cations. Excellent simultaneous separation and highly sensitive detection for these cations were achieved in 10 min by IC–CD using a Zr-silica column (150×4.6 mm I.D.) and 10 mM tartaric acid containing 10 mM 15-crown-5 (1,4,7,10,13-pentaoxacyclopentadecane) as the eluent. The proposed IC–CD method was successfully applied to the determination of major mono- and divalent cations in natural water samples.  相似文献   

2.
Ion-exclusion chromatography–cation-exchange chromatography was developed for the simultaneous separation of common inorganic anions and cations (Cl, NO3 and SO42−; Na+, NH4+, K+, Mg2+ and Ca2+) on a weakly acidic cation-exchange column by elution with weak acid. Generally, the resolution among these monovalent cations was only moderate, thereby hindering the determination of these analytes in natural-water samples. Therefore, 18-crown-6 was added to the eluent to improve the resolution. A good separation of these anions and cations on a weakly acidic cation-exchange column was achieved in 30 min by elution with 5 mM tartaric acid/6 mM 18-crown-6/methanol–water (7.5:92.5). The ion-exclusion chromatography–cation-exchange chromatography method developed here was successfully applied to the separation of major anions and cations in an environmental water sample.  相似文献   

3.
The modification of silica gel with aluminium and zirconium can be used for the preparation of advanced silica-based cation-exchange stationary phases for use in ion chromatography with conductimetric detection (IC-CD) for cations. Silica gels modified with aluminium (Al-silica) and zirconium (Zr-silica) act as cation-exchangers under strongly acidic conditions. Highly sensitive indirect conductimetric detection and excellently simultaneous separation for common mono- and divalent cations (Li+, Na+, NH4+, K+, Mg2+ and Ca2+) can be achieved on the Al-silica and Zr-silica columns in IC-CD by using acidic eluents containing 15-crown-5 (1,3,7,10,13-pentaoxacyclopentadecane). The Al-silica and Zr-silica can also be applied successfully as cation-exchange stationary phases in ion-exclusion chromatography for the separation of various aliphatic and benzenecarboxylic acids.  相似文献   

4.
The retention and detection behavior of common mono- and divalent cations (M+, alkali metal (Li+, Na+, K+, Rb+, Cs+) and ammonium ions (NH4+); M2+, alkaline earth metal ions (Mg2+, Ca2+, Sr2+, Ba2+) was examined using an ODS column (150×4.6 mm I.D.) and conductivity (CD)/UV detection. The results obtained were as follows: (1) for M+, the mobile phase, 0.1 mM sodium dodecyl sulphate (SDS)+10 mM HNO3 and indirect CD detection were effective. (2) Addition of Ce(III) in the mobile phase accelerated the elution of both M+ and M2+. The separation of above 10 cations on an ODS column was achieved for the first time without any coelution of cations and disturbance by system peak. Addition of higher SDS resulted in good separation of M+ and M2+ with longer retention times. CD detection was possible for M+ and M2+ and UV detection for M2+. (3) For M2+, the mobile phase, 0.8 mM Ce(III)+0.1 mM SDS+1 mM HNO3 and indirect UV detection were effective. The IC methods were applied to real samples.  相似文献   

5.
The application of laboratory-made aluminium-adsorbing silica gel (Al-Silica) as a cation-exchange stationary phase to ion chromatography-indirect photometric detection (IC-IPD) for common mono- and divalent cations (Li+, Na+, NH+, K+, Mg2+ and Ca2+) was carried out by using protonated tyramine (4-aminoethylphenol) as eluent ion. When using 1.2 mM tyramine-0.2 mM oxalic acid at pH 4.5 as eluent, incomplete separation of the monovalent cations and complete separation of the divalent cations were achieved in 17 min. Then, the addition of crown ethers in the eluent was carried out for the complete separation of the mono- and divalent cations. As a result, when using 1.2 mM tyramine--0.2 mM oxalic acid at pH 4.5 containing either 5 mM 15-crown-5 (1,4,7,10,13-pentaoxacyclopentadecane) or 0.5 mM and 18-crown-6 (1,4,7,10,13,16-hexaoxacyclooctadecane) as eluent, excellently simultaneous separation of these cations was achieved in 21 min. The proposed IC-IPD was successfully applied to the determination of major cations in natural water samples.  相似文献   

6.
The application of unmodified silica gel (Super Micro Bead Silica Gel B-5, SMBSG B-5) as a cation-exchange stationary phase in ion chromatography with indirect photometric detection (IC-IPD) for the separation of common mono- and divalent cations (Li+, Na+, NH4+, K+, Mg2+ and Ca2+) was carried out using various aromatic monoamines [tyramine [4-(2-aminoethyl)phenol], benzylamine, phenylethylamine, 2-methylpyridine and 2,6-dimethylpyridine] as eluents. When using these amines as eluents, the peak resolution between these mono- and divalent cations was not quite satisfactory and the peak shapes of NH4+ and K+ were largely destroyed on the SMBSG B-5 silica gel column. Hence, the application of SMBSG B-5 silica gel calcinated at 200, 400, 600, 800 and 1000 degrees C for 5 h in the IC-IPD was carried out. The peak shapes of the monovalent cations were greatly improved with increasing calcination temperature and, as a result, symmetrical peaks of these mono- and divalent cations were obtained on the SMBSG B-5 silica gel calcinated at 1000 degrees C as the stationary phase. In contrast, the peak resolution between these mono- and divalent cations was not improved. Therefore, crown ethers [18-crown-6 (1,4,7,10,13,15-hexaoxacyclooctadecane), 15-crown-5 (1,4,7,10,13-pentaoxacyclopentadecane)] were added to the eluent for the complete separation of these mono- and divalent cations. Excellent simultaneous separation and highly sensitive detection at 275 nm were achieved in 25 min on a column (150x4.6 mm I.D.) packed with SMBSG B-5 silica gel calcinated at 1000 degrees C by elution with 0.75 mM tyramine-0.25 mM oxalic acid at pH 5.0 containing either 1.0 mM 18-crown-6 or 10 mM 15-crown-5.  相似文献   

7.
Summary Pure silica gels (Pia Seed 5S-60-SIL) calcined at 200, 400, 600, 800 and 1000°C for 5 h have been used as cation-exchange stationary phases in ion chromatography with indirect photometric detection for common monovalent and divalent cations (Li+, Na+, NH4 +, K+, Mg2+ and Ca2+); 0.75mm tyramine (4-(2-aminoethyl)phenol)-0.25mm oxalic acid, pH 5.0, containing crown ethers (18-crown-6 (1,4,7,10,13,15-hexaoxacyclooctadecane) or 15-crown-5 (1,4,7,10,13-pentaoxacyclopentadecane)) was used as mobile phase. With increasing calcination temperature, the amounts of the crown ethers adsorbed on the calcined silica gel column increased and, consequently, the effect of the crown ethers as retention modifiers for these cations increased. Excellent simultaneous separation and highly sensitive detection of these cations at 275 nm were achieved in 17 min by use of a 150 mm×4.6 mm i.d. column packed with silica gel calcined at 1000°C and use of 0.75mm tyramine-0.25mm oxalic acid, pH 5.0, containing either 0.5mm 18-crown-6 or 5.0mm 15-crown-5 as mobile phase.  相似文献   

8.
Summary A pure silica gel (Pia Seed 5S-60-SIL), synthesized by the hydrolysis of pure tetraethoxysilane [Si(OCH2CH3)4], was applied as a cation-exchange stationary phase in ion chromatography with indirect photometric detection for common mono-and divalent cations (Li+, Na+, NH4 +, K+, Mg2+, and Ca2+) using various protonated aromatic monoamines (tyramine [4-(2-aminethyl) phenol], benzylamine, phenylethylamine, 2-methylpyridine and 2,6-dimethylpyridine) as eluet ions. When using 0.75 mM tyramine-0.25 mM oxalic acid-1.5 mM 18-crown-6 (1,4,7,10,13,16-hexaoxacyclooctadecane) at pH 5.0 as the eluent, excellent simultaneous separation and highly sensitive detection at 275 nm for these mono-and divalent cations were achieved on the Pia Seed 5S-60-SIL column (150×4.6 mm I.D.) in 20 min.  相似文献   

9.
10.
An unmodified silica gel (Develosil 30-5) column (150×4.6 mm I.D.) has been applied to the ion chromatographic separation of alkali, alkaline earth and transition metal cations. The retention behavior of the above cations on the bare substrate was investigated using a number of weak inorganic and organic acid eluents. During this investigation, several separations were achieved and the most suitable eluent conditions were identified. It was concluded that: (a) 1.5 mM HNO3-0.5mM pyridine-2,6-dicar☐ylic acid eluent was the most effective for the simultaneous separation of common alkali and alkaline earth metal cations, (b) 1.5 mM oxalic acid eluent resulted in the best separation of alkali, alkaline earth, and transition metal cations, (c) 0.5 mM CuSO4 eluent could be used for the separation of alkali metal cations alone and (d) 0.5 mM ethylenediamine-oxalic acid eluent at pH 5.5 resulted in themost efficient separation of both alkaline earth and transition metal cations.  相似文献   

11.
The new sorbent for non-suppressed ion chromatography based on silica gel coated with a film of polyaniline (PANI) was obtained in a process of in situ polymerization of aniline by oxidation with ammonium peroxydisulfate. Raman analyses performed using a Thermo Scientific DXR confocal Raman Microscope equipped with the Omnic 8 software from Thermo Fisher Scientific have proved a uniform distribution of PANI on the surface of chromatographic beads and in the pores of the particle.  相似文献   

12.
Proton NMR spectroscopy was used to study the complexation reaction between lithium ion and 12-crown-4, 15-crown-5 and 18-crown-6 in a number of binary acetonitrile-nitrobenzene mixtures. In all cases the exchange between free and complexed crowns was fast on the NMR time scale and only a single population average1H signal was observed. Formation constants of the resulting 1:1 complexes in different solvent mixtures were determined by computer fitting of the chemical shift-mole ratio data. There is an inverse relationship between the complex stability and the amount of acetonitrile in the mixed solvent. It was found that, in all solvent mixtures used, 15-crown-5 forms the most stable complex with Li+ ion in the series.  相似文献   

13.
The application of zirconium-modified silica gels (Zr-Silica) as stationary phases for ion-exclusion chromatography with conductimetric detection (IEC–CD) for C1–C8 aliphatic carboxylic acids (formic, acetic, propionic, butyric, valeric, caproic, heptanoic and caprylic acids) was carried out using pyromellitic acid as the eluent. Zr-Silicas were prepared by the reaction of the silanol group on the surface of silica gel with zirconium tetrabutoxide [Zr(OCH2CH2CH2CH3)4] in ethanol solution. An ASRS-Ultra anion self-regenerating suppressor in the K+ form was used for the enhancement of conductimetric detector response of these aliphatic carboxylic acids. A Zr-Silica adsorbed on 10 mg zirconium g−1 silica gel was the most suitable stationary phase in IEC–CD for the separation of these aliphatic carboxylic acids. Excellently simultaneous separation and highly sensitive detection for these aliphatic carboxylic acids were achieved in 25 min by IEC–CD with the Zr-Silica column (250×4.6 mm I.D.) and a 0.2 mM pyromellitic acid containing 0.15% heptanol as the eluent.  相似文献   

14.
The application of zirconium-modified silica gels (Zr–Silicas) as stationary phases for ion-exclusion chromatography with UV-photometric detection (IEC–PD) for mono-, di-, tri- and tetrabenzenecarboxylic acids (pyromellitic, trimellitic, hemimellitic, o-phthalic, salicylic and benzoic acids) and phenol was carried out using tartaric acid as the eluent. Zr–Silicas were prepared by the reaction of the silanol group on the surface of silica gel with zirconium tetrabutoxide [Zr(OCH2CH2CH2CH3)4] in ethanol solution. The effect of the amount of zirconium adsorbed on silica gel on chromatographic behavior of these benzenecarboxylic acids and phenol was investigated. As a result, Zr–Silica adsorbed on 20 mg zirconium g−1 silica gel was the most suitable stationary phase in the IEC–PD for the simultaneous separation of these benzenecarboxylic acids and phenol. Excellent simultaneous separation and highly sensitive UV detection at 254 nm for these benzenecarboxylic acids and phenol were achieved in 20 min by the IEC–PD using the Zr–Silica column (250×4.6 mm I.D.) and a 10 mM tartaric acid at pH 2.5 as eluent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号