首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Laser ablated V, Nb, and Ta atoms react with molecular hydrogen in excess neon at 4 K to give vanadium, niobium, and tantalum dihydrides that further react with H(2) to form VH(2)(H(2)), NbH(4), and TaH(4). The reaction products are identified by deuterium and deuterium hydride isotopic substitution. DFT and CCSD theoretical calculations are used to predict energies, geometries, and vibrational frequencies for these novel metal hydrides complex and molecules. The vanadium dihydride hydrogen complex, VH(2)(H(2)), is identified, while the niobium and tantalum tetrahydrides, NbH(4) and TaH(4,) with D(2d) symmetry structures are confirmed. Reactions of group 5 metal atoms with H(2) condensing in solid hydrogen gave VH(2)(H(2)) and the higher tetrahydride-hydrogen complexes NbH(4)(H(2))(4) and TaH(4)(H(2))(4).  相似文献   

2.
Uranium atoms excited by laser ablation react with CO in excess neon to produce the novel CUO molecule, which forms distinct Ng complexes (Ng = Ar, Kr, Xe) when the heavier noble gases are added. The CUO(Ng) complexes are identified through CO isotopic and Ng substitution on the neon matrix infrared spectra and by comparison to DFT frequency calculations. The U-C and U-O stretching frequencies of CUO(Ng) complexes are slightly red-shifted from frequencies for the (1)Sigma(+) CUO ground state, which identifies singlet ground state CUO(Ng) complexes. In solid neon the CUO molecule is also a complex CUO(Ne)(n), and the CUO(Ne)(n-1)(Ng) complexes are likewise specified. The next singlet CUO(Ne)(x)(Ng)(2) complexes in excess neon follow in like manner. However, the higher CUO(Ne)(x)(Ng)(n) complex (n = 3, 4) stretching modes approach pure argon matrix CUO(Ar)(n) values and isotopic behavior, which are characterized as triplet ground state complexes by DFT frequency calculations. This work suggests that the singlet-triplet crossing occurs with 3 Ar, 3 Kr, or 4 Xe and a balance of Ne atoms coordinated to CUO in the neon matrix host.  相似文献   

3.
Laser-ablated U atoms co-deposited with CO in excess neon produce the novel CUO molecule, which forms distinct Ng complexes (Ng=Ar, Kr, Xe) with the heavier noble gases. The CUO(Ng) complexes are identified through CO isotopic and Ng reagent substitution and comparison to results of DFT frequency calculations. The U[bond]C and U[bond]O stretching frequencies of CUO(Ng) complexes are slightly red-shifted from neon matrix (1)Sigma(+) CUO values, which indicates a (1)A' ground state for the CUO(Ng) complexes. The CUO(Ng)(2) complexes in excess neon are likewise singlet molecules. However, the CUO(Ng)(3) and CUO(Ng)(4) complexes exhibit very different stretching frequencies and isotopic behaviors that are similar to those of CUO(Ar)(n) in a pure argon matrix, which has a (3)A" ground state based on DFT vibrational frequency calculations. This work suggests a coordination sphere model in which CUO in solid neon is initially solvated by four or more Ne atoms. Up to four heavier Ng atoms successively displace the Ne atoms leading ultimately to CUO(Ng)(4) complexes. The major changes in the CUO stretching frequencies from CUO(Ng)(2) to CUO(Ng)(3) provides evidence for the crossover from a singlet ground state to a triplet ground state.  相似文献   

4.
Laser-ablated Mo atoms react with H2 upon condensation in excess argon, neon, and hydrogen. The molybdenum hydrides MoH, MoH2, MoH4, and MoH6 are identified by isotopic substitution (H2, D2, HD, H2 + D2) and by comparison with vibrational frequencies calculated by density functional theory. The MoH2 molecule is bent, MoH4 is tetrahedral, and MoH6 appears to have the distorted trigonal prism structure.  相似文献   

5.
Laser-ablated U atoms react with CO in excess argon to produce CUO, which is trapped in a triplet state in solid argon at 7 K, based on agreement between observed and relativistic density functional theory (DFT) calculated isotopic frequencies ((12)C(16)O, (13)C(16)O, (12)C(18)O). This observation contrasts a recent neon matrix investigation, which trapped CUO in a linear singlet state calculated to be about 1 kcal/mol lower in energy. Experiments with krypton and xenon give results analogous to those with argon. Similar work with dilute Kr and Xe in argon finds small frequency shifts in new four-band progressions for CUO in the same triplet states trapped in solid argon and provides evidence for four distinct CUO(Ar)(4-n)(Ng)(n) (Ng = Kr, Xe, n = 1, 2, 3, 4) complexes for each Ng. DFT calculations show that successively higher Ng complexes are responsible for the observed frequency progressions. This work provides the first evidence for noble gas-actinide complexes, and the first example of neutral complexes with four noble gas atoms bonded to one metal center.  相似文献   

6.
Laser-ablated zinc and cadmium atoms were mixed uniformly with H2 and O2 in excess argon or neon and with O2 in pure hydrogen or deuterium during deposition at 8 or 4 K. UV irradiation excites metal atoms to insert into O2 producing OMO molecules (M = Zn, Cd), which react further with H2 to give the metal hydroxides M(OH)2 and HMOH. The M(OH)2 molecules were identified through O-H and M-O stretching modes with appropriate HD, D2, (16,18)O2, and (18)O2 isotopic shifts. The HMOH molecules were characterized by O-H, M-H, and M-O stretching modes and an M-O-H bending mode, which were particularly strong in pure H2/D2. Analogous Zn and Cd atom reactions with H2O2 in excess argon produced the same M(OH)2 absorptions. Density functional theory and MP2 calculations reproduce the IR spectra of these molecules. The bonding of Group 12 metal dihydroxides and comparison to Group 2 dihydroxides are discussed. Although the Group 12 dihydroxide O-H stretching frequencies are lower, calculated charges show that the Group 2 dihydroxide molecules are more ionic.  相似文献   

7.
Laser-ablated Th atoms react with molecular hydrogen to give thorium hydrides and their dihydrogen complexes during condensation in excess neon and hydrogen for characterization by matrix infrared spectroscopy. The ThH2, ThH4, and ThH4(H2)x (x = 1-4) product molecules have been identified through isotopic substitution (HD, D2) and comparison to frequencies calculated by density functional theory and the coupled-cluster, singles, doubles (CCSD) method and those observed previously in solid argon. Theoretical calculations show that the Th-H bond in ThH4 is the most polarized of group 4 and uranium metal tetrahydrides, and as a result, a strong attractive "dihydrogen" interaction was found between the oppositely charged hydride and H2 ligands ThH4(H2)x. This bridge-bonded dihydrogen complex structure is different from that recently computed for tungsten and uranium hydride super dihydrogen complexes but is similar to that recently called the "dihydrogen bond" (Crabtree, R. H. Science 1998, 282, 2000). Natural electron configurations show small charge flow from the Th center to the dihydrogen ligands.  相似文献   

8.
DFT calculations suggest that the catalytic epoxidation of olefins by Mo(vi) complexes, modeled by MoO2Br2(MeN=C(H)-C(H)=NMe), in the presence of MeOOH, the model for tert-butyl hydroperoxide, starts with a hydrogen transfer from the peroxide to one of the terminal Mo=O oxygen atoms and the remaining MeOO anion binds as a seventh ligand, forming a five-membered Mo-O(alpha)-O(beta)(Me)...H-O-Mo ring held together by a hydrogen bond. In the second step, a concerted approach of ethylene to the Mo-O(alpha) bond gives rise to an intermediate containing a seven-membered Mo-C-C-O(alpha)-O(beta)(Me)...H-O-Mo ring. In the final step, decomposition of the intermediate leads to the starting complex, alcohol and the epoxide. The activation energy for the addition of the olefin (second step) is the highest one, in agreement with available kinetic studies showing that the catalyst formation is not always a rate-limiting step. DFT calculations also show that the alcohol by-product (MeOH) can react with the starting complex, competing with ROOH and hence leading to the progressive catalyst poisoning, which has been observed experimentally.  相似文献   

9.
The first monomeric anhydrous scandium tris(8-quinolinolate) complex 1 with the 2-amino-8-quinolinolate ligands and the Sc(2)Q(6) dinuclear complex 2 with the unsubstituted 8-quinolinolate ligands have been synthesized and characterized by X-ray analysis and DFT calculations. The intramolecular hydrogen bonds appear to be responsible for the unique monomeric structure of complex 1. The DFT-based analysis of the electron density topology reveals the (3,-1) critical points corresponding to the O···H and N···H bonds. The two scandium atoms in compound 2 are inequivalent due to different ligand surroundings. They are coordinated by seven (5O, 2N) and eight (4O, 4N) ligand atoms. The increase in the coordination number is accompanied by a decrease in the positive charge of the metal atom as evidenced by the DFT calculations.  相似文献   

10.
NMR J-couplings across hydrogen bonds reflect the static and dynamic character of hydrogen bonding. They are affected by thermal and solvent effects and can therefore be used to probe such effects. We have applied density functional theory (DFT) to compute the NMR (n)J(N,H) scalar couplings of a prototypical Chagas disease drug (metronidazole). The calculations were done for the molecule in vacuo, in microsolvated cluster models with one or few water molecules, in snapshots obtained from molecular dynamics simulations with explicit water solvent, and in a polarizable dielectric continuum. Hyperconjugative and electrostatic effects on spin-spin coupling constants were assessed through DFT calculations using natural bond orbital (NBO) analysis and atoms in molecules (AIM) theory. In the calculations with explicit solvent molecules, special attention was given to the nature of the hydrogen bonds formed with the solvent molecules. The results highlight the importance of properly incorporating thermal and solvent effects into NMR calculations in the condensed phase.  相似文献   

11.
Several monouranium and diuranium polyhydride molecules were investigated using quantum chemical methods. The infrared spectra of uranium and hydrogen reaction products in condensed neon and pure hydrogen were measured and compared with previous argon matrix frequencies. The calculated molecular structures and vibrational frequencies were used to identify the species present in the matrix. Major new absorptions were observed and compared with the previous argon matrix study. Spectroscopic evidence was obtained for the novel complex, UH4(H2)6, which has potential interest as a metal hydride with a large number of hydrogen atoms bound to uranium. Our calculations show that the series of complexes UH4(H2)1,2,4,6 are stable.  相似文献   

12.
Laser-ablated Sc, Y, and La atoms react with molecular hydrogen upon condensation in excess argon, neon, and deuterium to produce the metal dihydride molecules and dihydrogen complexes MH(2) and (H(2))MH(2). The homoleptic tetrahydrometalate anions ScH(4)(-), YH(4)(-), and LaH(4)(-) are formed by electron capture and identified by isotopic substitution (D(2), HD, and H(2) + D(2) mixtures). Doping with CCl(4) to serve as an electron trap virtually eliminates the anion bands, and further supports the anion identifications. The observed vibrational frequencies are in agreement with the results of density functional theory calculations, which predict electron affinities in the 2.8-2.4 eV range for the (H(2))ScH(2), (H(2))YH(2), and (H(2))LaH(2) complexes, and indicate high stability for the MH(4)(-) (M = Sc, La, Y) anions and suggest the promise of synthesis on a larger scale for use as reducing agents.  相似文献   

13.
Energy- and charge-transfer processes in neon-hydrogen mixtures (500-1400 hPa neon and 0.001-3 hPa hydrogen partial pressures) excited by a pulsed low-energy (approximately 10 keV) electron beam were investigated using time-resolved spectroscopy. Time spectra of the hydrogen Lyman-alpha line, neon excimer emission (second continuum), and neon atomic lines (3p-3s transitions) were recorded. The time-integrated intensity of the Lyman-alpha emission was measured for the same range of gas mixtures. It is shown that direct energy transfer from Ne*2 excimers and neon atoms in the four lowest excited states as well as recombination of H3+ ions are the main channels populating atomic hydrogen in the n=2 state. A rate constant of (4.2+/-1.4)x10(-11) cm3 s(-1) was obtained for the charge transfer from Ne2+ ions to molecular hydrogen. A lower limit for the depopulation rate constant of Ne*2 excimers by molecular hydrogen (combination of energy transfer and ionization) was found to be 1.0 x 10(-10) cm3 s(-1).  相似文献   

14.
The complexes formed by hydrogen with metal hydrides (LiH, NaH, BeH(2), MgH(2), BH(3), AlH(3), Li(2)H(2), Na(2)H(2), Be(2)H(4), and Mg(2)H(4)) have been theoretically studied at the MP2/aug-cc-pVTZ, MP2/aug-cc-pVQZ and CCSD(T)/aug-cc-pVTZ//CCSD/aug-cc-pVTZ levels of theory. The hydrogen molecule can act as a Lewis acid or base. In the first case, a dihydrogen bonded complex is obtained and in the second an interaction between the σ-bond of the hydrogen molecule and an empty orbital of the metal atoms is found. Quantum theory of atoms in molecules and natural bond orbitals methods have been applied to analyze the intermolecular interactions. Additionally, the cooperativity effects are analyzed for selected complexes with two H(2) molecules where both kinds of interactions exist simultaneously.  相似文献   

15.
Laser-ablated boron reacts with hydrogen on condensation in excess neon to give BH4 radical, BH4- anion, and B2H6 as the major products. Identifications are based on 10B and D substitution, DFT frequency calculations, and comparison to previous spectra. Infrared spectra of BH4 support the C2v structure deduced from previous ESR spectra and theoretical calculations with two normal B-H bonds and two long B-H bonds for this novel electron-deficient radical. NBO analysis suggests that the two long B-H bonds and the H- -H bond are one-electron bonds.  相似文献   

16.
Extensive density functional theory (DFT) calculations are carried out on various structural isomers of protonated methanol clusters, H(+)(MeOH)n (n = 2-9), to analyze the morphological development of the hydrogen bond network in the clusters with an increase of the cluster size. Coexistence of multiple structural isomers is demonstrated by the nearly degenerated energies. Moreover, significant temperature dependence of the preferential isomer structure is shown by the calculated Gibbs free energies. The previously reported infrared spectra of H(+)(MeOH)n (J. Phys. Chem. A 2005, 109, 138) are revisited on the basis of the spectral simulations of the isomers by DFT calculations.  相似文献   

17.
The properties of six dihydrogen-bonded (DHB) dimers with the BeH2 molecule as a proton acceptor were calculated by MP2, CCSD(T) and B3LYP methods. The structural, energetic and spectroscopic parameters are presented and analyzed in terms of their possible correlation with the interaction energy and the intermolecular H...H separation. The symmetry-adapted perturbation theory (SAPT) calculations were performed to gain more insight into the nature of the H...H interactions. The studied complexes are divided into three groups based on the calculated intermolecular distances and the interaction energies which range from approximately -1 to -42 kJ mol(-1). The analysis of the interaction energy components indicates that, in contrast to conventional hydrogen bonds, the induction energy is the most important term in the BeH2NH4+ complex. On the other hand, there is no sharp boundary between the DHB complexes classified as hydrogen bonded and van der Waals systems. The complexation-induced changes in vibrational frequencies and in proton shielding constants show a relationship with the interaction energy. The values of the 2hJXH and 3hJBeX coupling constants correlate well with the interaction energy and with the intermolecular distance.  相似文献   

18.
采用第一性原理的密度泛函理论研究单个氢原子和多个氢原子在Be(0001)表面吸附性质.给出了氢吸附Be(0001)薄膜表面的原子结构、吸附能、饱和度、功函数、偶极修正等特性参数.同时也讨论了相关吸附性质与氢原子覆盖度(0.06-1.33ML)的关系.计算结果表明:氢原子的吸附位置与覆盖度之间有强烈的依赖关系,覆盖度低于0.67ML时,氢原子能量上易于占据fcc或hcp的中空位置;覆盖度为0.78ML时,中空位与桥位为氢原子的最佳吸附位;覆盖度在0.89到1.00ML时,桥位是氢原子吸附能量最有利的位置;以上覆盖度中Be(0001)表面最外层铍原子的结构均没有发生明显变化.当覆盖度为1.11-1.33ML,高覆盖度下Be(0001)表面的最外层铍原子部分发生膨胀,近邻氢原子渗入到铍表面次层,氢原子易于占据在hcp和桥位.吸附结构中的氢原子比氢分子中的原子稳定.当覆盖度大1.33ML时,计算结果没有发现相对于氢分子更稳定的吸氢结构.同时从分析偶极修正和氢原子吸附垂直高度随覆盖度的变化关系判断氢覆盖度为1.33ML时,在Be(0001)表面吸附达到饱和.  相似文献   

19.
采用从头算分子轨道法对锥型硼烷B5H10X(X=Be^-,B,C^+,BeH,CH^2+,B^2-,C^-,N,O^+,BH^-,CH,NH^+和OH^2+)进行了研究,结果表明,端氢和桥氢原子与帽基原子相对位置的变化是由帽基原子和环原子轨道的弥散程度及环的尺寸效应共同决定的,端氢原子对桥氢原子的空间位置有着制约作用。  相似文献   

20.
The reactions of molecular tantalum and niobium monoxides and dioxides with water were investigated by matrix isolation infrared spectroscopy. In solid neon, the metal monoxide and dioxide molecules reacted with water to form the MO(H(2)O) and MO(2)(H(2)O) (M = Ta, Nb) complexes spontaneously on annealing. The MO(H(2)O) complexes photochemically rearranged to the more stable HMO(OH) isomers via one hydrogen atom transfer from water to the metal center under visible light excitation. In contrast, the MO(2)(H(2)O) complexes isomerized to the more stable MO(OH)(2) molecules via a hydrogen atom transfer from water to one of the oxygen atoms of metal dioxide upon visible light irradiation. The aforementioned species were identified by isotopic-substituted experiments as well as density functional calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号