首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The experimental investigation of a turbulent separated flow over a fence is presented. By introducing a periodic disturbance upstream of the separation region in front of the fence, the time averaged length of the separation region downstream of the fence was reduced by as much as 40%. Two types of flow manipulation were applied: an oscillating cross-flow with zero net mass-flux through a spanwise slot in the floor of the test section and a spanwise oriented, oscillating spoiler. The cross-flow was generated by a loudspeaker system connected to a chamber underneath the spanwise slot. Both types of flow manipulation generate spanwise vortices at the fence that convect into the region downstream of the fence where they enhance the mixing in the shear layer and reduce the time mean length of the reverse-flow region downstream of the fence. Velocity profiles phase averaged with respect to the forcing frequency and phase triggered flow visualisations show that the spanwise vortices cause the long reverse-flow region of the unmanipulated flow to break up into separate smaller regions. While the time mean length of the reverse-flow region is reduced in the manipulated case, the length of the region where instantaneous reverse-flow occurs is not changed. The data presented include wall pulsed-wire measurements of the wall shear-stress and its turbulent fluctuations, and LDA measurements of the streamwise and the wall-normal velocity components and turbulent stresses.  相似文献   

2.
The turbulent velocity field over the rib-roughened wall of an orthogonally rotating channel is investigated by means of two-dimensional particle image velocimetry (PIV). The flow direction is outward, with a bulk Reynolds number of 1.5 × 104 and a rotation number ranging from 0.3 to 0.38. The measurements are obtained along the wall-normal/streamwise plane at mid-span. The PIV system rotates with the channel, allowing to measure directly the relative flow velocity with high spatial resolution. Coriolis forces affect the stability of the boundary layer and free shear layer. Due to the different levels of shear layer entrainment, the reattachment point is moved downstream (upstream) under stabilizing (destabilizing) rotation, with respect to the stationary case. Further increase in rotation number pushes further the reattachment point in stabilizing rotation, but does not change the recirculation length in destabilizing rotation. Turbulent activity is inhibited along the leading wall, both in the boundary layer and in the separated shear layer; the opposite is true along the trailing wall. Coriolis forces affect indirectly the production of turbulent kinetic energy via the Reynolds shear stresses and the mean shear. Two-point correlation is used to characterize the coherent motion of the separated shear layer. Destabilizing rotation is found to promote large-scale coherent motions and accordingly leads to larger integral length scales; on the other hand, the spanwise vortices created in the separating shear layer downstream of the rib are less organized and tend to be disrupted by the three-dimensional turbulence promoted by the rotation. The latter observation is consistent with the distributions of span-wise vortices detected in instantaneous flow realizations.  相似文献   

3.
A transonic backward-facing step flow, at a free stream Mach number of 0.8 and a Reynolds number of 1.86 × 105 with respect to the step height, was investigated experimentally by means of planar and stereo Particle Image Velocimetry (PIV) measurements for multiple fields of view. The primary aim of this analysis is to examine whether the large temporal variations of the reattachment location is associated with the presence of large scale coherent flow structures. The mean flow reattaches ≈6.1±0.2 times the step height downstream of the step. This value fluctuates temporally as much as ±3 step heights. Measurements of the wake flow in horizontal planes show that the strong variations of the reattachment length are associated with spanwise variations of the streamwise velocity. Two-point correlations revealed large–scale coherent regions with a length of up to 7 step heights and a dominant spanwise wave-length of 1.5…2.5 step heights. Furthermore, close to the step large structures are found, which span more than 5 step heights in spanwise direction. The Reynolds stress distribution of the separated region strongly suggests that the initial streamwise momentum is transferred to the vertical component as well as to the spanwise component in comparable portions by the deformation of the initial Kelvin-Helmholtz vortices and the generation of secondary ones. As a result, the separated shear layer is characterized by eddies of various sizes and orientations. The mean flow field only shows the primary separation bubble and a secondary recirculation region. No stationary streamwise vortices could be found for the tested Reynolds number.  相似文献   

4.
Non-reacting experiments and numerical simulations have been performed to investigate the mixing characteristics in a supersonic combustor with gaseous fuel injection upstream of a flameholding cavity in a supersonic vitiated air flow with stream Mach number 1.7. Using helium as simulated fuel, the acetone vapor is adulterated into the fuel jet. The fuel distribution in spanwise and streamwise direction is imaged by the planar laser-induced fluorescence (PLIF) measurement. According to the similarity of experimental observations with different cavities, the typical L/D = 7 cavity with aft wall angle 45° is chosen and the flowfield with the injection is calculated by Large Eddy Simulation. Experimental and numerical results have shown that most of the fuel flow away upon the open cavity with the lifting counter-rotating vortex structures induced by the transverse jet. Only a small portion of the fuel is convected into the cavity shear layer by the vortex interaction of the jet with cavity shear layer, and then transported into the cavity due to the cavity shear layer motion and the interaction of the shear layer with the cavity trailing edge.  相似文献   

5.
An experimental study of supersonic flow over two-dimensional surface-mounted prisms is carried out in a Mach 3 low-noise wind tunnel. The noise level of this supersonic wind tunnel, defined as the root mean-square Pitot pressure fluctuation normalized by the mean Pitot pressure, can be reduced to about 0.37%. The nanotracer planar laser scattering (NPLS) technique is used to analyze the influence of the prism geometry and the oncoming flow conditions on the typical flow structures including separation and reattachment shocks. With increase in the prism height the induced shocks move upstream. At a constant streamwise length L of a prism the timeaveraged NPLS images show that the length of the downstream recirculation region increases from 0.8L to 1.2L, when the prism height H changes from 3 to 5 mm. As compared with the flow structures occurring downstream of the prisms, the upstream flow structures are more susceptible to the oncoming boundary layer and are considerably different in laminar and turbulent flows. The separation shock wave is clearly visible in turbulent flow even for the 1-mm prism, whereas in the case of laminar flow there is no a distinct shock wave upstream of this prism. At the same time, the location of the flow reattachment and the angle of the reattachment shock wave in the downstream flow remain almost the same in both two flow regimes.  相似文献   

6.
The present study describes the application of particle image velocimetry (PIV) to investigate the compressible flow in the wake of a two-dimensional blunt base at a freestream Mach number MX=2. The first part of the study addresses specific issues related to the application of PIV to supersonic wind tunnel flows, such as the seeding particle flow-tracing fidelity and the measurement spatial resolution. The seeding particle response is assessed through a planar oblique shock wave experiment. The measurement spatial resolution is enhanced by means of an advanced image-interrogation algorithm. In the second part, the experimental results are presented. The PIV measurements yield the spatial distribution of mean velocity and turbulence. The mean velocity distribution clearly reveals the main flow features such as expansion fans, separated shear layers, flow recirculation, reattachment, recompression and wake development. The turbulence distribution shows the growth of turbulent fluctuations in the separated shear layers up to the reattachment location. Increased velocity fluctuations are also present downstream of reattachment outside of the wake due to unsteady flow reattachment and recompression. The instantaneous velocity field is analyzed seeking coherent flow structures in the redeveloping wake. The instantaneous planar velocity and vorticity measurements return evidence of large-scale turbulent structures detected as spatially coherent vorticity fluctuations. The velocity pattern consistently shows large masses of fluid in vortical motion. The overall instantaneous wake flow is organized as a double row of counter-rotating structures. The single structures show vorticity contours of roughly elliptical shape in agreement with previous studies based on spatial correlation of planar light scattering. Peak vorticity is found to be five times higher than the mean vorticity value, suggesting that wake turbulence is dominated by the activity of large-scale structures. The unsteady behavior of the reattachment phenomenon is studied. Based on the instantaneous flow topology, the reattachment is observed to fluctuate mostly in the streamwise direction suggesting that the unsteady separation is dominated by a pumping-like motion.  相似文献   

7.
Subharmonic-perturbed shear flow downstream of a two-dimensional backward-facing step was experimentally investigated. The Reynolds number was Reh = 2.0 ×104, based on free-stream velocity and step height. Planar 2D-2C particle image velocimetry was employed to measure the separating and reattaching flow in the horizontal-vertical plane in the center position. The subharmonic perturbations were generated by an oscillating flap which was implemented over the step edge and driven by periodic Ampere force. The subharmonic frequency was 55 Hz as the half of the fundamental frequency of the turbulent shear layer. As a result of the subharmonic perturbations, the size of recirculation region behind the backward-facing step is reduced and the time-averaged reattachment length is 31.0% shorter than that of the natural flow. The evolution of vortices, including vortex roll-up, growth and breakdown process, is analyzed by using phase-averaging, cross-correlation function and proper orthogonal decomposition. It is found that Reynolds shear stress is considerably increased in which the vortices roll up and then break down further downstream. In particular, rapid growth of vortices based on the “step mode” occurs at approximate half of the recirculation region, caused by in interaction between the shear layer and the recirculation region. Furthermore, the coherent structures, which are represented by a phase-correlated POD mode pair, are reconstructed in phases in order to show regular patterns of the subharmonic-perturbed coherent structures.  相似文献   

8.
 Planar laser-induced fluorescence (PLIF) of seeded nitric oxide was used to obtain mean 2-D temperature and pressure fields in the near-wake region of a thick flat plate in a Mach 3 flow. A two-line ratio technique was used to obtain the temperature field, while an image obtained at the limit of low quenching rate was used to infer the pressure field. An analysis shows that these time-average measurements can suffer from significant weighted averaging bias errors in regions where there are large temperature fluctuations; however, these bias errors can be minimized by judicious selection of the absorption lines used. The resulting temperature field reveals the warm upstream boundary layer, the temperature jump across the recompression shocks and the expected minimum and maximum temperatures in the expansion and recirculation regions, respectively. The pressure measurements indicate a uniform low pressure in the base region, a rapid increase near reattachment, followed by a gradual approach to the free stream value farther downstream. Received: 25 July 1996 / Accepted: 11 September 1997  相似文献   

9.
For the last three decades, the research into skimming flows down stepped chutes was driven by needs for better design guidelines. The skimming flow is characterised by some momentum transfer from the main stream to the recirculation zones in the shear layer developing downstream of each step edge. In the present study some physical modelling was conducted in a relatively large facility and detailed air–water flow measurements were conducted at several locations along a triangular cavity. The data implied some self-similarity of the main flow properties in the upper flow region, at step edges as well as at all locations along the step cavity. In the developing shear layer and cavity region (i.e. y/h < 0.3), the air–water flow properties presented some specific features highlighting the development of the mixing layer downstream of the step edge and the strong interactions between cavity recirculation and mainstream skimming flows. Both void fraction and bubble count rate data showed a local maximum in the developing shear layer, although the local maximum void fraction was always located below the local maximum bubble count rate. The velocity profiles had the same shape as the classical mono-phase flow data. The air–water flow properties highlighted some intense turbulence in the mixing layer that would be associated with large shear stresses and bubble–turbulence interactions.  相似文献   

10.
Planar laser-induced fluorescence (PLIF) imaging was performed to visualize the fin bow shock, separation shock, viscous shear layer and recirculation region of the flowfield at the junction of a blunt fin and a flat plate. Making use of the temperature dependence of the PLIF technique, images were made sensitive to temperature to provide qualitative information on the flowfield. The PLIF technique was also used as the basis for a flow-tagging technique, making it possible to measure a velocity component and to demonstrate the reverse flow of the separated region. Flow visualisation of the plane of symmetry allowed determination of the point of boundary layer separation, the angle of the separation shock and the bow shock standoff distance. These parameters were compared with predictions made by computational fluid dynamic simulations of the flowfield. Good agreement between theory and experiment was achieved. Comparisons between theoretical and experimental velocity measurements showed good agreement. Received 17 October 2000 / Accepted 13 November 2000  相似文献   

11.
A multi-row effusion cooling configuration with scaled gas turbine combustor conditions is studied numerically, using a novel wall-proximity-based hybrid LES-RANS approach. The distribution of the coolant film is examined by surface adiabatic cooling effectiveness (ACE). Simulation results have shown that the accuracy of cooling effectiveness prediction is closely related to the resolution of turbulent flow structures involved in hot-cold flow mixing, especially those close to the plate surface. The formation of the coolant film in the streamwise direction is investigated. It is shown that the plate surface directly downstream the coolant holes are covered well by the coolant jets, while surface regions in between the two columns of the coolant holes could not be protected until the coolant film is developed sufficiently in the spanwise direction in the downstream region. More detailed study has also been carried out to study the time-averaged and time-dependent flow fields. The relation between the turbulent flow structures and coolant film distribution are also examined. The Kelvin–Helmholtz instability in the upper and lower coolant jet shear layer, is found to have the same frequency of around 8000 Hz, and is independent of the coolant hole position. Additionally, it is suggested by the spectral coherence analysis that those unsteady flow structures from the lower shear layer are closely related to the near wall flow temperature, and such effect is also independent of the coolant hole position.  相似文献   

12.
An experimental study was conducted in a transonic channel to control by mechanical vortex generator devices the strong interaction between a shock wave and a separated turbulent boundary layer. Control devices—co-rotating and counter-rotating vane-type vortex generators—were implemented upstream of the shock foot region and tested both on a steady shock wave and on a forced shock oscillation configurations. The spanwise spacing of vortex generator devices along the channel appeared to be an important parameter to control the flow separation region. When the distance between each device is decreased, the vortices merging is more efficient to reduce the separation. Their placement upstream of the shock wave is determinant to ensure that vortices have mixed momentum all spanwise long before they reach the separation line, so as to avoid separation cells. Then, vortex generators slightly reduced the amplitude of the forced shock wave oscillation by delaying the upstream displacement of the leading shock.  相似文献   

13.
Transitional jet diffusion flames provide the link between dynamics of laminar and turbulent flames. In this study, instabilities and their interaction with the flow structure are explored in a transitional jet diffusion flame, with focus on isolating buoyancy effects. Experiments are conducted in hydrogen flames with fuel jet Reynolds number of up to 2,200 and average jet velocity of up to 54 m/s. Since the fuel jet is laminar at the injector exit, the transition from laminar to turbulent flame occurs by the hydrodynamic instabilities in the shear layer of fuel jet. The instabilities and the flow structures are visualized and quantified by the rainbow schlieren deflectometry technique coupled with a high-speed imaging system. The schlieren images acquired at 2,000 frames per second allowed exposure time of 23 μs with spatial resolution of 0.4 mm. Results identify a hitherto unknown secondary instability in the flame surface, provide explanation for the observed intermittency in the breakpoint length, show coherent vortical structures downstream of the flame breakpoint, and illustrate gradual breakdown of coherent structures into small-scale random structures in the far field turbulent region.  相似文献   

14.
An experimental study on heat transfer enhancement for a turbulent natural convection boundary layer in air along a vertical flat plate has been performed by inserting a long flat plate in the spanwise direction (simple heat transfer promoter) and short flat plates aligned in the spanwise direction (split heat transfer promoter) with clearances into the near-wall region of the boundary layer. For a simple heat transfer promoter, the heat transfer coefficients increase by a peak value of approximately 37% in the downstream region of the promoter compared with those in the usual turbulent natural convection boundary layer. It is found from flow visualization and simultaneous measurements of the flow and thermal fields with hot- and cold-wires that such increase of heat transfer coefficients is mainly caused by the deflection of flows toward the outer region of the boundary layer and the invasion of low-temperature fluids from the outer region to the near-wall region with large-scale vortex motions riding out the promoter. However, heat transfer coefficients for a split heat transfer promoter exhibit an increase in peak value of approximately 60% in the downstream region of the promoter. Flow visualization and PIV measurements show that such remarkable heat transfer enhancement is attributed to longitudinal vortices generated by flows passing through the clearances of the promoter in addition to large-scale vortex motions riding out the promoter. Consequently, it is concluded that heat transfer enhancement of the turbulent natural convection boundary layer can be substantially achieved in a wide area of the turbulent natural convection boundary layer by employing multiple column split heat transfer promoters. It may be expected that the heat transfer enhancement in excess of approximately 40% can be accomplished by inserting such promoters.  相似文献   

15.
A hypersonic shock-tunnel flow around an axisymmetric model of a planetary entry probe is analyzed. Planar laser-induced fluorescence is applied to measure both the velocity and the rotational temperature everywhere in the central plane of the flow field. The experimental test case is compared to simulations using the direct simulation Monte Carlo (DSMC) method. While the Mach 9.7 flow at a freestream Reynolds number based on the model diameter of 35,000 is chemically frozen, effects of thermal non-equilibrium and localized rarefaction cannot be neglected. DSMC and measurements agree well within the outer wake, but disagree close to the centerline, where in particular the measured velocity is higher than values predicted by the simulations. The experimental results indicated a shorter recirculation region and increased local fluctuations in the free shear layer upstream of the wake recompression shock when compared to the simulation. These effects are attributed to incipient transition, which is not observed in the simulations, as the simulations did not model the effects of freestream fluctuations. Furthermore, measured and simulated vorticities are compared with theoretical predictions.  相似文献   

16.
The present paper presents an experimental effort on the regeneration process of two low-speed laminar streaks in a zero-pressure-gradient laminar boundary layer. Two vertical thin wires separated by a spanwise distance of 30 mm are used to introduce disturbances of two rolls of transitional Karmain vortex street to the downstream boundary layer. Both hydrogen bubble visualization and particle image velocimetry (PIV) measurement show that two lowspeed streaks are induced through leading-edge receptivity process. As these streaks develop in the downstream, two additional low-speed streaks begin to appear outboard of the flank of the original two, together with complex dynamics of streak splitting and merging. A flow pattern of four streaks aligned along the spanwise direction occurs finally in the far downstream. It is found that besides the mechanisms of streak breakdown, the streak interaction is also an important factor characterizing the instability of low speed streaks and their regeneration process.  相似文献   

17.
Experiments were carried out to study the behavior of the incompressible turbulent separated shear layer and subsequent reattachment, downstream of a backward-facing step in a channel. The main objective of the study was to determine the effect of the expansion ratio on the development of the mean velocity and turbulence intensity in the shear layer and on the evolution of wall static pressure downstream of the step. The step height-to-upstream channel height ratio was varied between 0.5 and 2.13 while all inlet conditions were kept constant. Both hot-wire anemometry and frequency shifted laser Doppler anemometry were used for the velocity measurements. The Reynolds number based on free stream velocity and channel height upstream of the step was 16,600. The expansion ratio was found to have a particularly strong influence in the development of the turbulent, separated shear layer. Larger step height-to-inlet channel height ratios lead to higher turbulence intensities and faster growth of the unstable shear layer. As a result of this, shorter normalized reattachment lengths occurred with lager expansion ratios. For all the expansion ratios studied, the mean reattachment lenght was uniform along the spanwise direction except very near the side walls.  相似文献   

18.
An experimental investigation into the mechanism of shock wave oscillation in compression ramp-generated shock wave/turbulent boundary layer interactions is presented. Particular emphasis is focused upon documenting the respective roles played by both burst-sweep events in the turbulent boundary layer immediately upstream of the interaction and the downstream separated shear layer upon unsteady shock front motion. Unlike the majority of compression ramp experiments which involve bulk separation and large-scale shock motion, consideration is given here to comparatively “weak” interactions in which the streamwise spatial excursion of the shock front is always less than one boundary layer thickness. In this manner any shock motion due to upstream burst-sweep events should be more apparent in relation to that oscillation associated with the separated region. A discrete Hilbert transform-based conditional sampling technique is used to obtain wall pressure measurements conditioned to burst-sweep events. The conditional sampling technique forms the basis by which the instantaneous shock motion is conditioned to the occurrence of upstream bursting. The relationship between the separation bubble and shock motion is also explored in detail. The results of the experiments indicate that the separation bubble represents a first-order effect on shock oscillation. Although it is demonstrated theoretically that the burst-sweep cycle can also give rise to unsteady shock motion of much lower amplitude, the experiments clearly demonstrate that there is no discernible statistical relationship between burst events and spanwise coherent shock front motion.  相似文献   

19.
This paper performs large eddy simulations (LES) to investigate coherent structures in the flows after the Sydney bluff-body burner, a circular bluff body with an orifice at its center. The simulations are validated by comparison to existing experimental data. The Q function method is used to visualize the instantaneous vortex structures. Three kinds of structures are found, a cylindrical shell structure in the outer shear layer, a ring structure and some hairpin-like structures in the inner shear layer. An eduction scheme is employed to investigate the coherent structures in this flow. Some large streaks constituted by counter-rotating vortices are found in the outer shear layer and some well-organized strong structures are found in the inner shear layer. Finally, the influences of coherent structures on scalar mixing are studied and it is shown that scalar in the recirculation region is transported outward by coherent structures.  相似文献   

20.
高频吹气扰动影响近壁区拟序结构统计特性的实验研究   总被引:1,自引:0,他引:1  
利用恒温热线风速仪测量了零压力梯度平板上施加由合成射流激发的狭缝周期吹气扰动前后不同流向位置湍流边界层的速度信号, 展开高频吹气扰动影响近壁区湍流结构的统计特性研究. 研究结果表明:高频周期吹气扰动在狭缝下游产生明显的减阻效果. 扰动强度在湍流边界层内的发展沿流向呈衰减趋势, 其与湍流结构的相互作用也相应衰减. 然而, 因高频扰动产生运动的展向涡结构与猝发引起的结构变化尺度相当, 直接影响了近壁区拟序结构产生与发展的统计, 从而使得猝发检测方法VITA 表现出与低频或定常吹气减阻机理相异的现象.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号