首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The laser flash photolysis of indole at 265 nm in the presence of glycine, proline and hydroxy proline was studied. The relative yields of c aq, triplet state, and indole cation radical were determined in the absence and in the presence of the amino acids. The yields were determined as a function of laser intensity and the values at very low intensity were compared with the fluorescence quenching results. It was concluded that in these conditions the photoionization of indole occurs via the fluorescent state. From the curves of triplet yield vs laser intensity, the triplet quantum yield extrapolated at low laser intensity was obtained, φr = 0.55 φ 0.05, relative to the literature value of 0.15 for φeag. This gives φFeaq= 1.0 ± 0.1 at room temperature. When proline and hydroxy proline were used as singlet quenchers, the yield of In was greater than the yield of caq. This was considered as evidence that a fraction of the quenching processes leads to complete electron transfer from indole to the amino acids.  相似文献   

3.
4.
Abstract— An electron-spin-resonance study of the radicals produced by ultraviolet irradiation of amino acids in the presence of transition metal ions at low temperature has been carried out. For the monocarboxylic acids, the photosensitized irradiation resulted in loss of carbon dioxide, which led to the formation of free radicals of the type H3ŃR1R2. When the amino acid contained two carboxylic groups, e.g. aspartic acid, decarboxylation took place at the position remote from the amino group. When the odd electron is localized at the carbon atom β to the amino group, e.g. β-alanine and aspartic acid, it was stable enough to be detected at room temperature.  相似文献   

5.
Abstract— Quantum yields of cysteine, ammonia, 1-amino,1'-oxo,2,2'-dithiodipropionicacid (AODT–DPA), alanine, alanine 3-sulphinic acid, cysteic acid, and serine have been determined in aqueous oxygenated and deaerated cystine solutions irradiated with 254 nm radiation. From the effect of methanol, ethanol and propanol-2 on the quantum yields of cysteine, ammonia, AODT-DPA and alanine, it is concluded that (a) the S–S bond is broken with high quantum efficiency, (b) C–S and C–N bonds do not undergo primary photolytic fission, and (c) all the AODT–DPA, but only about 12 per cent of the ammonia, is free-radical in origin. The production of pyruvic acid at the expense of AODT–DPA in irradiated cystine solutions containing alanine provides further evidence that AODT–DPA has free-radical precursors. Reaction schemes are proposed for the radical-induced production of keto acid and ammonia in oxygenated and deaerated solutions.  相似文献   

6.
《合成通讯》2013,43(4):555-564
A very efficient method for the preparation of N-acylamino acids from the corresponding acyl chloride and amino acid is described. Amino acids, potassium carbonate, acyl chloride, and a catalytic amount of cationic surfactants were mixed in tetrahydrofuran and refluxed without ever obtaining a clear reaction mixture. After hot filtration, the product was isolated from the hot tetrahydrofuran solution in very high or almost quantitative yields.  相似文献   

7.
Abstract— Quantum yields for the destruction of tryptophan by a single 500 J flash in aqueous solution have been determined over the pH range 1–13 in both air-equilibrated and nitrogen-saturated conditions. When these quantum yields are compared with the quantum yields for radical formation and photoejection of electrons, it is found that there is good agreement only for the nitrogen-saturated case. In air-equilibrated solutions of tryptophan, there is a large disparity between the measured degradation quantum yields and those for photoejection of electrons and radical formation. Oxygen, therefore, is playing a major role in the photochemical decomposition and it is proposed that the major reaction which occurs, under normal atmospheric conditions, is the reaction of the lowest triplet excited state of tryptophan with oxygen.
Preliminary photolysis-product distributions against pH are discussed, and indicate that a total of nine major products are formed in the presence of oxygen.  相似文献   

8.
Abstract— The DNA of bacteriophage SP02c12 was subjected to 254 nm irradiation in solutions containing lysozyme or histone. In these solutions, the protein-DNA mass ratios and the ionic strengths of the solvents were varied to change the amount of protein associated with the DNA. Lysozyme-DNA binding constants were measured under the same conditions. The sensitivity of phage DNA to biological inactivation by UV increased as the amount of lysozyme bound per DNA strand increased. Although binding constants could not be measured for the DNA-histone interaction, this protein had a protective effect which was greater under conditions which cause enhanced binding. No crosslinking of either protein could be detected even at doses ten-fold greater than those giving a surviving fraction of 0.01.
Irradiation was also performed in the presence of various amino acids and short peptides. These were chosen to include amino acids which: (1) are positively charged, (2) absorb UV of this wavelength or (3) form UV-induced crosslinks to DNA. None of the amino acids tested affected sensitivity of the DNA to biological inactivation. Peptides containing a UV-absorbing amino acid and a positively charged amino acid enhanced sensitivity. For each of these peptides, a mixture of the constituent amino acids had the same effect as the peptide itself. Under the conditions used, no evidence for formation of DNA-amino acid crosslinks was found. The results indicate that proteins and peptides can sensitize DNA to UV inactivation by mechanisms other than covalent crosslink formation. Such mechanisms could include energy or electron transfer or alterations in the conformation of the DNA.  相似文献   

9.
10.
Abstract— The intermediates produced in the photolysis of oxygen-free aqueous solutions of a number of aliphatic amino acids and peptides were observed spectrophotometrically using the fast-reaction technique of flash photolysis. Included among the compounds examined are the N-acetyl derivatives of glycine, alanine, sarcosine, glutamic acid and glycylglycine; the esters and amides of these N-acetyl compounds; diketopiperazines; the amino acids glycine, alanine and β-alanine; and finally the oligopeptides di-, tri- and tetraglycine. The direct optical excitation of these compounds was found to lead primarily to a photo-induced decarboxylation reaction:
The transient spectra of the radicals produced have been identified. The quantum yields of these processes were found to be directly proportional to the p K a of the carboxyl groups of the corresponding ground-state molecules, and hence to the concentration of the non-ionized carboxylic acids. The φ's of these processes for the ionized acids were close to zero. The dependence of φ upon pH is correlated to the absorption spectra of these compounds. The quantum yields of the corresponding esters were lower but independent of pH. No intermediates were observed from excitation of the amine derivatives. Other photolytic reactions are suggested. The photo-decarboxylation of alanine and diglycine were found to be monophotonic, while that of N-acetyl alanine, N-acetyl diglycine, and tetraglycine were found to be biphotonic. A triplet excited state precursor is indicated for the latter group of compounds. These and other results are discussed.  相似文献   

11.
12.
13.
14.
Abstract— The UV photolysis of tryptophan (Trp) and Trp-containing peptides in aerated aqueous solutions has been studied by ESR and spin-trapping techniques using f-nitrosobutane as the spin-trap. The photolysis of Trp alone at 290 nm gave rise to the addition of the spin-trap to carbon 3 of the indole ring. A large ESR signal from the hydronitroxide spin-adduct was also observed revealing the formation of hydrated electrons. Generally, the photolysis of Trp-containing dipeptides generated the deamination radical of the N-terminal amino acid followed by addition to the spin-trap. In the case of lysyl-Trp, a deamination radical from the side chain of lysine was proposed. A sensitization experiment with Trp as sensitizer and glycine (Gly) as substrate led to the generation of the deamination radical of Gly. Most of the observed free radicals resulting from the photolysis of Trp-containing peptides can be explained in terms of hydrated electrons reacting with the carbonyl group followed by deamination of the N-terminus.  相似文献   

15.
16.
Abstract— The UV-photolysis of peptides containing tyrosine (Tyr) was investigated in aqueous solutions at room temperature at 220 and 265 nm. The short-lived free radicals formed during photolysis were spin-trapped by t-nitrosobutane and identified by electron spin resonance. For N-acetyl- and N-formyl-L-Tyr and for peptides containing L-Tyr as the middle residue, photolysis at 265 nm under neutral conditions produced mainly spin-adducts due to the scission between the alpha carbon and the methylene group attached to the aromatic ring, while at 220 nm decarboxylation radicals were spin-trapped. Photolysis of di- and tripeptides at 275 nm in alkaline solutions predominantly generated deamination radicals. The radicals produced in the photolysis of the oxidized A chain of insulin were tentatively characterized by comparison with the results for di- and tripeptides.  相似文献   

17.
Abstract— The direct UV photolysis of l -Phe and peptides containing l -Phe in aqueous solutions has been investigated at room temperature. The short-lived free radicals formed during photolysis were spin-trapped by t -nitrosobutane and identified by electron spin resonance. During the photolysis of l -Phe the decarboxylation and the deamination radicals were spin-trapped. For N-formyl and N-acetyl- l -Phe the decarboxylation radicals were observed. For dipeptides containing Phe the decarboxylation radicals were observed and in some cases the deamination radicals from the N-terminal residue were found. For the tripeptides Gly- l -Phe- l -Ala and Gly-Gly- l -Phe, the C-terminal decarboxylation radical was spin trapped; for l -Phe-Gly-Gly only the deamination radical of the N-terminal residue could be detected. However, for Gly- l -Phe-Gly, five different radicals were identified. The results of the spin-trapping experiments of the 260 nm photolysis of RNase-S-peptide, containing 20 amino acid residues, was interpreted in terms of a chain scission between the alpha carbon of the Phe residue and the adjacent carbonyl group.  相似文献   

18.
19.
A photochemically induced dynamic nuclear polarisation (photo-CIDNP) study is presented of the amino acids that are polarisable with a flavin dye. These include derivatives of tryptophan, tyrosine, histidine, methylated lysines and methionine. The influence of pH, concentration and chemical modification on the magnitude of the CIDNP effect has been studied to obtain mechanistic information about the radical pair formation. The pH and concentration dependence of tyrosine and tryptophan polarisation could be accounted for quantitatively. The CIDNP evidence indicates that hydrogen-atom abstraction is important in generating radical pairs in the case of histidine and tyrosine, while electron transfer prevails in the case of tryptophan, the methylated lysines and methionine.  相似文献   

20.
Abstract— Ultraviolet light flashes induced voltage transients across bilayer lipid membranes when aromatic amino acids were adsorbed to one side of the membrane. These photo-effects varied with the chromophore structure, the aqueous solution salt concentration, pH and oxygen partial pressure. These photo-effects are attributed to the migration of electrically charged photochemical intermediates in the membrane, and provide a new method for studying the effects of UV light on membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号