首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism of a place-exchange reaction of ligand-protected Au nanoparticles was investigated using diradical disulfide spin labels. Analysis of reaction mixtures using a combination of GPC and EPR allowed us to determine concentration profile and propose a kinetic model for the reaction. In this model, only one branch of the disulfide ligand is adsorbed on the Au surface during exchange; the other branch forms mixed disulfide with the outgoing ligand. The two branches of the disulfide ligand therefore do not adsorb in adjacent positions on the surface of Au nanoparticles; this was ultimately proven by the powder EPR spectra of frozen exchange reaction mixtures. Our data also suggest the presence of different binding sites with different reactivity in the exchange reaction. The most-active sites are likely to be nanoparticle surface defects.  相似文献   

2.
A study of the magnetic and electrochemical properties of a TEMPO‐substituted disulfide diradical in three different environments was carried out: in solution, in the crystal, and as a self‐assembled monolayer (SAM) on an Au(111) substrate, and the relationship between them was explored. In solution, this flexible diradical shows a strong spin‐exchange interaction between the two nitroxide functions that depends on the temperature and solvent. Structural, dynamic, and thermodynamic information has been extracted from the EPR spectra of this dinitroxide. The magnetic interactions in the crystal include intra‐ and intermolecular contributions, which have been studied separately and shown to be antiferromagnetic in both cases. Finally, we demonstrate that both the magnetic and electrochemical properties are preserved upon chemisorption of the diradical on a gold surface. The resulting SAM displayed anisotropic magnetic properties, and angle‐resolved EPR spectra of the monocrystal allowed a rough determination of the orientation of the molecules in the SAM.  相似文献   

3.
This paper deals with the microscopic mechanism of nanolithography of self-assembled monolayers (SAM) of alkanethiol molecules on Au(111) induced by the exposure of the film to a beam of "cold" Cs atoms. Density functional theory calculations have been carried out to elucidate the mechanism of interaction of the Cs atoms with the SAM. We found that the film damage occurs in two steps: the Cs atom penetrates the SAM and at a distance of 10-12 Angstrom from the surface donates one electron to Au, forming a Cs(+) cation which binds strongly to the surface and interacts with the polar head of the SR molecule. The thermal energy released in this process largely exceeds the energy required to stimulate the desorption of RS-SR disulfide molecules from the Au surface with consequent damage of the film. No chemical interaction occurs between Cs or Cs(+) and the hydrocarbon chain of the thiol molecule.  相似文献   

4.
Conducting polymers can be synthesized by irreversible diradical monomer polymerization. A reversible version of this reaction consisting of the formation/dissociation of σ‐dimers and σ‐polymers from a stable quinonoidal diradical precursor is described. The reaction reversibility is made by a quinonoidal molecule which changes its structure to an aromatic species by forming weak and long intermolecular C?C single bonds. The reaction provokes a giant chromic effect of about 2.5 eV. The two opposite but complementary quinonoidal and aromatic tautomers provide the Janus faces of the reactants and products which produces the observed chromic effect. A reaction mechanism is proposed to explain the variety of final products starting with structurally very similar reactants. These reversible reactions, covering an unusual regime of weak covalent supramolecular bonding, yield products which might be envisaged as novel molecular and polymeric soft matter phases.  相似文献   

5.
Rate and equilibrium constants are reported for the thiol/disulfide exchange reactions of the peptide hormone somatostatin with glutathione (GSH). GSH reacts with the disulfide bond of somatostatin to form somatostatin-glutathione mixed disulfides (Cys(3)-SH, Cys(14)-SSG and Cys(3)-SSG, Cys(14)-SH), each of which can react with another molecule of GSH to give the reduced dithiol form of somatostatin and GSSG. The mixed disulfides also can undergo intramolecular thiol/disulfide exchange reactions to re-form the disulfide bond of somatostatin or to interconvert to the other mixed disulfide. Analysis of the forward and reverse rate constants indicates that, at physiological concentrations of GSH, the intramolecular thiol/disulfide exchange reactions that re-form the disulfide bond of somatostatin are much faster than reaction of the mixed disulfides with another molecule of GSH, even though the intramolecular reaction involves closure of a 38-membered ring. Thus, even though the disulfide bond of somatostatin is readily cleaved by thiol/disulfide exchange, it is rapidly reformed by intramolecular thiol/disulfide exchange reactions of the somatostatin-glutathione mixed disulfides. By comparison with rate constants reported for analogous reactions of model peptides measured under random coil conditions, it is concluded that disulfide bond formation by intramolecular thiol/disulfide exchange in the somatostatin-glutathione mixed disulfides is not completely random, but rather it is directed to some extent by conformational properties of the mixed disulfides that place the thiol and mixed disulfide groups in close proximity. A reduction potential of -0.221 V was calculated for the disulfide bond of somatostatin from the thiol/disulfide exchange equilibrium constant.  相似文献   

6.
The polymerization mechanism of tetramethylenes was reinvestigated under inclusion of solvent effects. The approach of a methanol molecule to a borderline diradical, a typical diradical, and a typical zwitterion was studied by a valence, charge, and dipole moment analysis of SINDO 1 calculations. Whereas the solvent molecule has no effect on the character of the zwitterion, the borderline diradical was found to switch to a zwitterion at the approach of the methanol molecule if the distance between the donor carbon and the methanol oxygen is below 2 Å. A similar switch of character was observed for the typical diradical at CO distances below 1.5 Å. From energy considerations it is concluded that borderline diradicals can follow a zwitterionic polymerization mechanism in polar solvents, whereas typical diradicals are much less likely to do so.  相似文献   

7.
The mechanochemistry of the disulfide bridge--that is, the influence of an externally applied force on the reactivity of the sulfur-sulfur bond--is investigated by unrestricted Kohn-Sham theory. Specifically, we apply the COGEF (constrained geometry simulates external force) approach to characterize the mechanochemistry of the disulfide bond in three different chemical environments: dimethyl disulfide, cystine, and a 102-atom model of the I27 domain in the titin protein. Furthermore, the mechanism of the thiol-disulfide reduction reaction under the effect of an external force is investigated by considering the COGEF potential for the adduct and transition-state clusters. With the unrestricted Becke-three-parameter-Lee-Yang-Parr (UB3LYP) exchange-correlation functional in the 6-311++G(3df,3pd) orbital basis, the rupture force of dimethyl disulfide is 3.8 nN at a disulfide bond elongation of 35 pm. The interaction with neighboring groups and the effect of conformational rigidity of the protein environment have little influence on the mechanochemical characteristics. Upon stretching, we make the following observations: the diradical character of the disulfide bridge increases; the energy difference between the singlet ground state and low-lying triplet state decreases; and the disulfide reduction is promoted by an external force in the range 0.1-0.4 nN. Our model of the interplay between force and reaction mechanism is in qualitative agreement with experimental observations.  相似文献   

8.
The mild and highly efficient thiol-ene click reaction has been used to construct a rotaxane incorporating dibenzo-24-crown-8 (DB24C8) and a dibenzylammonium-derived thread in high yield under the irradiation of UV light. A rotaxane containing a disulfide linkage in the macrocycle was also synthesized by the thiol-ene click reaction. It has been demonstrated that the formation of the [2]rotaxane with the disulfide bond in the macrocycle occurs by a mechanism that is different to the threading-followed-by-stoppering process. The successful construction of a rotaxane directly from its constituent components, the macrocycle containing a disulfide linkage and the dibenzylammonium hexafluorophosphate salt, suggests that the space within the macrocycle incorporating the disulfide linkage is smaller than the phenyl unit and a plausible reaction mechanism has been proposed as follows: A small amount of the initiator forms two radicals upon the absorption of UV irradiation; the radicals act as a "key" to "unlock" the disulfide bond in the macrocycle. The resulting crown ether like moiety in the macrocycle is clipped around the ammonium ion center in the dumb-bell-shaped compound. The [2]rotaxane is generated upon recombination of the disulfide linkage.  相似文献   

9.
We predict the intramolecular magnetic exchange coupling constant (J) for eleven nitronyl nitroxide diradicals (NN) with different linear and angular polyacene couplers from broken-symmetry density functional treatment. For the linear acene couplers, J initially decreases with increase in the number of fused rings. But from anthracene coupler onward, the J value increases with the number of benzenoid rings due to an increasing diradical character of the coupler moiety. The J value for the diradical with a fused bent coupler is always found to be smaller than that for a diradical with a linear coupler of the same size. The nuclear independent chemical shift (NICS) is calculated, and it is observed that the average of the NICS values per benzenoid ring in the diradical is less than that in the normal polyacene molecule. An empirical formula for the magnetic exchange coupling constant of a NN diradical with an aromatic spacer is obtained by combining the Wiberg bond order (BO), the angle of twist (phi) of the monoradical (NN) plane from the plane of the coupler, and the NICS values. A comparison of the formula with the computed values reveals that, from tetracene onward, the diradical nature of the linear acene couplers becomes prominent thereby leading to an increase in the ferromagnetic coupling constant. Isotropic hyperfine coupling constants are calculated by using a polarized continuum model for the diradicals in different solvents and in vacuum.  相似文献   

10.
RhCl3 catalyzed the alkylthio exchange reaction of hydrophilic disulfides in water under homogeneous conditions, and equilibrium was attained in several hours. The reaction was applied to the exchange of unprotected glutathione disulfide. The reaction of dimethyl disulfide and hydrophilic disulfides under heterogeneous conditions also proceeded effectively. The mechanism turned out to be dependent on the water solubility of the substrates: The reaction of bis(3-hydroxypropyl) disulfide took place in the dimethyl disulfide phase, whereas the reaction of bis(6-aminohexyl) disulfide dihydrochloride proceeded in the water phase.  相似文献   

11.
A systematic study of cross-linking chemistry of the Au(25)(SR)(18) nanomolecule by dithiols of varying chain length, HS-(CH(2))(n)-SH where n = 2, 3, 4, 5, and 6, is presented here. Monothiolated Au(25) has six [RSAuSRAuSR] staple motifs on its surface, and MALDI mass spectrometry data of the ligand exchanged clusters show that propane (C3) and butane (C4) dithiols have ideal chain lengths for interstaple cross-linking and that up to six C3 or C4 dithiols can be facilely exchanged onto the cluster surface. Propanedithiol predominately exchanges with two monothiols at a time, making cross-linking bridges, while butanedithiol can exchange with either one or two monothiols at a time. The extent of cross-linking can be controlled by the Au(25)(SR)(18) to dithiol ratio, the reaction time of ligand exchange, or the addition of a hydrophobic tail to the dithiol. MALDI MS suggests that during ethane (C2) dithiol exchange, two ethanedithiols become connected by a disulfide bond; this result is supported by density functional theory (DFT) prediction of the optimal chain length for the intrastaple coupling. Both optical absorption spectroscopy and DFT computations show that the electronic structure of the Au(25) nanomolecule retains its main features after exchange of up to eight monothiol ligands.  相似文献   

12.
We report on the synthesis and characterization of atomically precise one-dimensional diradical peripentacene polymers on a Au(111) surface. By means of high-resolution scanning probe microscopy complemented by theoretical simulations, we provide evidence of their magnetic properties, which arise from the presence of two unpaired spins at their termini. Additionally, we probe a transition of their magnetic properties related to the length of the polymer. Peripentacene dimers exhibit an antiferromagnetic (S=0) singlet ground state. They are characterized by singlet–triplet spin-flip inelastic excitations with an effective exchange coupling (Jeff) of 2.5 meV, whereas trimers and longer peripentacene polymers reveal a paramagnetic nature and feature Kondo fingerprints at each terminus due to the unpaired spin. Our work provides access to the precise fabrication of polymers featuring diradical character which are potentially useful in carbon-based optoelectronics and spintronics.  相似文献   

13.
The molecule 4,4'-di-n-octyl-p-quaterphenyl was synthesized in one step by a nickel-catalyzed cross-coupling reaction. Powder X-ray diffraction shows that it crystallizes in a layered structure with the long axis of the molecule nearly perpendicular to the layer plane. Differential scanning calorimetry indicates a transition to a liquid-crystalline phase at 81 degrees C. Reaction of 4,4'-bis(4-pyridyl)biphenyl with 1-bromooctane yields the dication 2(2+) 2Br-, an "extended viologen" isostructural with 4,4'-di-n-octyl-p-quaterphenyl. Reduction of 2(2+) 2Br- with sodium amalgam in DMF yields 2, the first neutral extended viologen to be isolated. The molecule 2 is, to the best of our knowledge, the most reducing neutral organic molecule that has been synthesized. Single-crystal X-ray diffraction shows that a diradical form, either singlet or triplet, makes an important contribution to the electronic structure of 2. The broadened 1H NMR spectrum of 2 indicates the presence of a triplet, but it has not been possible to observe the triplet by ESR spectroscopy. The electronic structure of 2 appears to be closely related to that of a classic molecule, Chichibabin's hydrocarbon.  相似文献   

14.
B3LYP/6-31G* and CASMP2 calculations have been employed to study the ene reaction of singlet oxygen with trans-cyclooctene. These methods predict that the reaction involves a perepoxide intermediate, whereas alkenes such as tetramethylethylene are predicted by the same methods to occur by a two-step no-intermediate mechanism, with no perepoxide intermediate. The change in mechanism arises because the trans-cyclooctene imposes a substantial strain in the transition state for hydrogen abstraction. The perepoxide is formed through a polarized diradical intermediate that can lead to the observation of alkene isomerization. The polarized diradical also becomes a minimum because of the barrier to abstraction.  相似文献   

15.
Density functional cluster model calculations have been performed to explore the reaction mechanism for the adsorption of ethylene on Si(100). It is shown that the [2 + 2] cycloaddition of ethylene on a Si=Si dimer of Si (100) surface follows a diradical mechanism, via a pi-complex precursor and a singlet diradical intermediate, and the rate-determining step for the overall reaction is the formation of the diradical intermediate.  相似文献   

16.
The replacement of phenylethanethiolate (SC2Ph) ligands on 1.1 nm (core diameter) Au38(SC2Ph)24 monolayer-protected clusters (MPCs) with varied amounts of triphenylphosphine (PPh3) is investigated in methylene chloride. UV-vis spectra suggest that changes in the MPC Au core size occur when large amounts (> 10 equiv moles per cluster) of PPh3 are reacted with Au38(SC2Ph)24. 1H and 31P NMR spectra following the addition of smaller amounts (< 5 equiv moles) of PPh3 indicate that the reaction liberates a AuISC2Ph complex, as opposed to a SC2Ph thiol, disulfide, or anion. A 1H NMR kinetic study shows that the exchange is surprisingly rapid, even faster than exchanges of thiolates with other thiolates, at room temperature and in air. The reaction is slowed when cooled or conducted under Ar. The difference in potentials of the initial one-electron voltammetric reduction and oxidation of Au38(SC2Ph)24 decreases slightly upon reaction with small amounts of PPh3.  相似文献   

17.
The diradical generated by the Bergman cyclization of 3,4-benzocyclodec-3-ene-1,5-diyne is shown to initiate the radical polymerization of several monomers. Methacrylates are polymerized to high molecular weight by the diradical initiator much more efficiently than other monomers. The relation between the rate of polymerization and the degree of polymerization indicates that the polymer primarily propagates as a monoradical. This monoradical growth is in agreement with established theory predicting that diradical initiators can produce high polymer only through chain transfer followed by monoradical growth due to the rapid intramolecular termination of short diradical chains. In agreement with this mechanism, the polymerization rate of acrylonitrile initiated by the diradical is shown to increase by more than 20-fold upon addition of a chain transfer agent. Small molecule products consistent with intramolecular termination of diradical oligomers were isolated, and the structures of these molecules suggest how the diradical self-terminates in the absence of chain transfer.  相似文献   

18.
The reaction of 1,1-dilithio-2,3,4,5-tetraphenylsilole (1) with 1,1-dichloro-2,3-diphenylcyclopropene (2) leads to the novel 1,4-disila-1,4-dihydropentalene (4), as well as an exceptionally stable diradical for which the structure 3 is suggested. The diradical is unreactive toward water, methanol, and chloroform; upon heating it transforms into 4. Structure 3 for the paramagnetic species is proposed on the basis of EPR data and theoretical calculations. The trans-trans isomer of diradical 3 was calculated to be more stable than its cis-cis isomer. The strong and stable EPR signal in the reaction mixture is probably due to the trans-trans isomer of diradical 3 in the triplet state. A reaction scheme describing the formation of 3 and 4 is presented.  相似文献   

19.
We report on the synthesis and characterization of atomically precise one‐dimensional diradical peripentacene polymers on a Au(111) surface. By means of high‐resolution scanning probe microscopy complemented by theoretical simulations, we provide evidence of their magnetic properties, which arise from the presence of two unpaired spins at their termini. Additionally, we probe a transition of their magnetic properties related to the length of the polymer. Peripentacene dimers exhibit an antiferromagnetic (S=0) singlet ground state. They are characterized by singlet–triplet spin‐flip inelastic excitations with an effective exchange coupling (Jeff) of 2.5 meV, whereas trimers and longer peripentacene polymers reveal a paramagnetic nature and feature Kondo fingerprints at each terminus due to the unpaired spin. Our work provides access to the precise fabrication of polymers featuring diradical character which are potentially useful in carbon‐based optoelectronics and spintronics.  相似文献   

20.
Photochemical cyclization of compound 1, a homoenediyne (-CCC=CCH2CC-) bearing two ethynylanthracene chromophores, yields two isomeric dihydrocyclopent[a]indene ring systems, spiro-fused to the 9-position of a 9,10-dihydroanthracene moiety. Evidence of a photochemically initiated diradical cyclization pathway is proposed on the basis of (i) hydrogen abstraction from reaction with 1,4-cyclohexadiene (1,4-CHD) and (ii) the observation of 1,4-addition of benzene (solvent). The reaction was further analyzed by a complete density functional theory (DFT) study, using an unrestricted approach (UBLYP) with a 6-31G* basis set for the open-shell triplet states of the reactants, products, and diradical intermediates to model the photochemical nature of observed transformation. A mechanism detailing the observed cyclization/addition reaction is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号