首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ionic liquid coated nanoparticles (IL-NPs) consisting of zero-valent iron are shown to display intrinsic peroxidase-like activity with enhanced potential to catalyze the oxidation of the chromogenic substrate 3,3′,5,5′-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide. This results in the formation of a blue green colored product that can be detected with bare eyes and quantified by photometry at 652 nm. The IL-NPs were further doped with bismuth to enhance its catalytic properties. The Bi-doped IL-NPs were characterized by FTIR, X-ray diffraction and scanning electron microscopy. A colorimetric assay was worked out for hydrogen peroxide that is simple, sensitive and selective. Response is linear in the 30–300 μM H2O2 concentration range, and the detection limit is 0.15 μM.
Graphical abstract Schematic of ionic liquid coated iron nanoparticles that display intrinsic peroxidase-like activity. They are capable of oxidizing the chromogenic substrate 3,3′,5,5′-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide. This catalytic oxidation generated blue-green color can be measured by colorimetry. Response is linear in the range of 30–300 μM H2O2 concentration, and the detection limit is 0.15 μM.
  相似文献   

2.
Hydrogen gas as a clear energy resource was found to be largely bubbled from a H2O/H2O2/MnWO4 system. MnWO4 powder was fabricated by an aqueous reaction method. The powder was characterized with X-ray diffraction (XRD), transmission electron microscope (TEM), and X-ray photoelectron spectrometry (XPS). The efficiency of the hydrogen generation increases with an increase in initial pH in the appropriate range, H2O2 proportion, MnWO4 proportion, and intensity of light resource. Calcining at 400 °C for 1 h can make the MnWO4 powder synthesized by an aqueous reaction more effective for H2 generation and more stable in higher initial pH. The MnWO4 catalyst shows a long-term stability for photocatalytic H2 generation. A mechanism was suggested for the hydrogen generation from the H2O/H2O2/MnWO4 system together with XPS analysis.  相似文献   

3.
Graphite-like carbon nitride ? Fe3O4 magnetic nanocomposites were synthesized by a chemical co-precipitation method. The nanocomposites were characterized by transmission electron microscopy, X-ray diffraction, FTIR spectroscopy, X-ray photoelectron spectroscopy and magnetization hysteresis loops. The nanocomposites exhibit enhanced peroxidase-like activity (compared to that of graphite-like carbon nitride or Fe3O4 NPs). More specifically, they are capable of catalyzing the oxidation of different peroxidase substrates (such as TMB, ABTS or OPD) by H2O2 to produce the typical color reactions (blue, green or orange). The nanocomposites retain their magnetic properties and can be separated by an external magnet. On the basis of these findings, a highly sensitive and selective method was applied to the determination of H2O2 and glucose (by using glucose oxidase). It was successfully applied to the determination of glucose in (spiked) human serum. Compared to other nanomaterial-based peroxidase mimetics, the one described here provides distinctly higher sensitivity for both H2O2 and glucose, with detection limits as low as 0.3 μM and 0.25 μM, respectively.
Graphical abstract The magnetic carbon nitride nanocomposite exhibits enhanced peroxidase-like activity that is much larger than that of graphite-like carbon nitride or Fe3O4 NPs alone. This finding was applied to design a highly sensitive and selective colorimetric assay for H2O2 and glucose.
  相似文献   

4.
One-dimensional (1D) submicron-belts of V2O5 have been prepared by a sol–gel route using V2O5, H2O2 and aniline as starting materials. Thermogravimetric and differential thermal analysis, X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy were employed to characterize the samples. Electrochemical behaviors as cathode material in rechargeable lithium-ion batteries were investigated by galvanostatic charge–discharge measurement and cyclic voltammeter. The results showed that the synthesized V2O5 appeared to be submicron-belts and orthorhombic structure. The V2O5 submicron-belts exhibited a high initial discharge capacity of 346 mAh/g and stayed 240 mAh/g after 20 cycles at 0.1 C discharge rate in the potential region 1.8–4.0 V.  相似文献   

5.
One of the methods for the synthesis of peroxy-radical condensates is the condensation at liquid nitrogen temperature of an H2+O2 mixture dissociated in an electrical discharge at low pressure. Peroxy-radical condensates are thought to contain substantial quantities of higher hydrogen peroxides H2O3 and H2O4. The present work investigates the influence of experimental parameters on the synthesis of peroxy-radical condensates from an H2+O2 mixture, analyses the relevant literature, and recommends the optimal experimental conditions for the synthesis. The synthesis is carried out in a U-tube electrical discharge reactor (inner diameter ∼15 mm), immersed in liquid nitrogen, at rather low pressure (0.5–1 Torr). The maximum conversion of initial O2 into higher hydrogen peroxides was observed at a composition of initial gas mixture of 66.7% H2 + 33.3% O2.  相似文献   

6.
The incorporation of nanomaterials into electrochemical sensors is an attractive approach towards the improvement of the sensitivity of amperometry and also can provide improved sensor selectivity and stability. This review (with 137 references) details the current state of the art and new trends in nanomaterial-based electrochemical sensing of hydrogen peroxide (H2O2), hydrogen sulfide (H2S) and nitric oxide (NO) in cells or released by cells. The article starts with a discussion of the significance of the three analytes, and this is followed by three sections that summarize the electrochemical detection schemes for H2O2, H2S and NO. Each section first summarizes the respective physiological roles, and then reviews electrochemical sensors based on the use of carbon nanomaterials, noble metal nanomaterials, metal oxide nanomaterials, and layered doubled hydroxides. The materials are compiled in three tables along with figures of merit for the various sensors.
Graphical abstract Nanomaterial-based electrochemical sensors for Reactive oxygen species (H2O2), Reactive nitrogen species (NO) and Reactive hydrogen sulfide species (H2S) inside cells or released by cells.
  相似文献   

7.
Adsorption microcalorimetry has been employed to study the interaction of ethylene with the reduced and oxidized Pt-Ag/SiO2catalysts with different Ag contents to elucidate the modified effect of Ag towards the hydrocarbon processing on platinum catalysts. In addition, microcalorimetric adsorption of H2, O2, CO and FTIR of CO adsorption were conducted to investigate the influence of Ag on the surface structure of Pt catalyst. It is found from the microcalorimetric results of H2and O2adsorption that the addition of Ag to Pt/SiO2leads to the enrichment of Ag on the catalyst surface which decreases the size of Pt surface ensembles of Pt-Ag/SiO2catalysts. The microcalorimetry and FTIR of CO adsorption indicates that there still exist sites for linear and bridged CO adsorption on the surface of platinum catalysts simultaneously although Ag was incorporated into Pt/SiO2. The ethylene microcalorimetric results show that the decrease of ensemble size of Pt surface sites suppresses the formation of dissociative species (ethylidyne) upon the chemisorption of C2H4on Pt-Ag/SiO2. The differential heat vs. uptake plots for C2H4adsorption on the oxygen-preadsorbed Pt/SiO2and Pt-Ag/SiO2catalysts suggest that the incorporation of Ag to Pt/SiO2could decrease the ability for the oxidation of C2H4.  相似文献   

8.
Results of thermodynamic calculations and kinetic studies of the reaction of zinc ferrite ZnFe2O4 and of a mixture of oxides, ZnO and Fe2O3, with chlorine and SO2 are presented.  相似文献   

9.
The absence of experimental evidence for the occurrence of the catalytic reaction 2H2 + O2 → 2H2O on platinum in accordance with the Langmuir-Hinshelwood mechanism was established. It was found that the heterogeneous process can be described more adequately and its nature can be better understood with consideration for chemical transformations involving molecules in a precursor state in a model of the above reaction. The inverse kinetic problem was solved. It was found that the model in which an unambiguously specified set of rate constants for the elementary steps of the reaction was used provided an opportunity to describe experimental data obtained by various authors concerning the oxidation of hydrogen on platinum over the detonating gas pressure range 10?3-105 Pa. The signs of the occurrence of heterogeneous reactions by an adsorption mechanism were found.  相似文献   

10.
This study describes an amperometric sensor for hydrogen peroxide (H2O2) that uses an ITO glass electrode which was modified with a nanocomposite consisting of electrochemically reduced graphene oxide and gold nanoclusters (AuNCs). The sensor was used to quantify extracellular H2O2 released from human neuroblastoma cells of type SH-SY5Y. The calibration plot, established best at a working voltage of ?0.4 V (vs. Ag/AgCl) is linear in the 40 nmol?L?1 to 2 μmol?L?1 concentration range, and the detection limit is 20 nmol?L?1 (at a signal-to-noise ratio of 3). The method was further applied to study bupivacaine-induced cell damage and the protective effects of α-lipoic acid. The study indicated that pretreatment of the cells with lipoic acid retards cell damage induced by bupivacaine. The sensor can be easily fabricated, is disposable and highly sensitive. The sensor is perceived to represent an alternative for studying the interactions of drugs with cells, and as an effective tool to quantify cell-secreted H2O2.
Graphical abstract One-step electrochemical synthesis of graphene oxide and gold nanoclusters on an ITO electrode for studying the release of H2O2 from SH-SY5Y cells and for evaluation of drug-induced cell damage
  相似文献   

11.
The effects of H2 and H2 + O2 gas mixtures of varying composition on the state of the surface of the Pt/MoO3 model catalyst prepared by vacuum deposition of platinum on oxidized molybdenum foil were investigated by X-ray photoelectron spectroscopy (XPS) at room temperature and a pressure of 5–150 Torr. For samples with a large Pt/Mo ratio, the XP spectrum of large platinum particles showed that the effect of hydrogen-containing mixtures on the catalyst was accompanied by the reduction of molybdenum oxide. This effect results from the activation of molecular hydrogen due to the dissociation on platinum particles and subsequent spill-over of hydrogen atoms on the support. The effect was not observed at low platinum contents in the model catalyst (i.e., for small Pt particles). It is assumed for the catalyst that the loss of its hydrogen-activating ability is a consequence of the formation of platinum hydride. Possible participation of platinum hydride as intermediate in hydrogen oxidation to H2O2 is discussed.  相似文献   

12.
The paper describes a nonenzymatic amperometric H2O2 sensor that uses a nanocomposite consisting of Co3O4 nanoparticles (NPs) and mesoporous carbon nanofibers (Co3O4-MCNFs). The Co3O4 NPs were grown in situ on the MCNFs by a solvothermal procedure. The synergetic combination of the electrocatalytic activity of the Co3O4 NPs and the electrical conductivity of MCNFs as an immobilization matrix enhance the sensing ability of the hybrid nanostructure. The oxidation current, best measured at 0.2 V (vs. SCE) is linear in the 1 to 2580 μM H2O2 concentration range, with a 0.5 μM lower detection limit (at an S/N ratio of 3). The sensor is highly selective even in the presence of common electroactive interferents. It was applied to the determination of H2O2 in spiked milk samples.
Graphical abstract Schematic of the synthesis of a nanocomposite consisting of Co3O4 nanoparticles (NPs) and mesoporous carbon nanofibers (Co3O4-MCNFs) by a solvothermal procedure. It was used as electrocatalyst for direct oxidation of H2O2.
  相似文献   

13.
14.
A physicochemical study of glasses based on the MO-Bi2O3-B2O3 and SrO-Bi2O3-B2O3 systems was performed. Glass formation regions were found. The structural and optical properties, as well as the thermal behavior of the glasses, were studied.  相似文献   

15.
In this study, a three-component nanocomposite consisted of graphene, manganese ferrite and phosphotungstic acid (PTA) has been prepared. This composite, which is designated as Graphene/MnFe2O4@PTA, was synthesized through anchoring of PTA–imidazolium ionic liquid on magnetic graphene sheets. The structural and magnetic properties of the fabricated nanocomposite were studied by employing FT-IR, SEM, EDX, TEM, ICP, VSM, P-XRD and BET techniques. The synthesized magnetic nanocomposite was examined as an efficient and recyclable acidic catalyst for Mannich reaction under solvent-free conditions. The products of this reaction, which are an important class of potentially bioactive compounds, were obtained with good to excellent yields, and the catalyst could be readily recycled without any significant loss of its activity.  相似文献   

16.
The adsorption of small molecules NO, NH3 and H2O on V2O5/TiO2 catalysts is studied with the semiempirical SCF MO method MSINDO as pre-stage for the selective catalytic reduction of NO. The mixed catalyst is represented by hydrogen-terminated cluster models. The local arrangement of the cluster atoms is in accordance with available experimental information. Partial relaxation of cluster atoms near the adsorption sites is taken into account. Calculated adsorption energies are compared with experimental literature data. Rapid convergence of computed properties with cluster size is observed. A possible reaction mechanism for the catalytic reduction of NO with NH3 and O2 is outlined.  相似文献   

17.
The kinetics of catalytic decomposition of H2O2 on palladium-carbon catalysts with various deposited metal distributions in carrier (active carbon) porous granules was studied. The activation parameters (E a and A 0) of the process were calculated by the Arrhenius equation. A determining factor for the catalytic process was found to be the entropy factor (A 0), which characterized the formation and dissociation of activated transition complexes. A quantum-chemical study of the electronic structure of palladium-carbon catalysts showed the occurrence of electron density transfer from the carbon matrix to metal clusters and collectivization of their electronic systems. This increased the donor-acceptor ability of the synthesized materials and, as a consequence, their catalytic activity.  相似文献   

18.
A simple, efficient, and eco-friendly catalytic system for the oxidation of cyclohexene to adipic acid with H2O2 catalyzed by H2WO4 in Brønsted acidic ionic liquids under solvent-free conditions has been developed. Reaction conditions such as the catalysts, the types of anions and cations for Brønsted acidic ionic liquids, reaction temperature, and the amount of hydrogen peroxide, were investigated. Moreover, the Hammett acidity functions (H 0) of Brønsted acidic ionic liquids were determined using UV–visible spectrophotometry. The optimum reaction condition identified was n(H2WO4):n(Brønsted acidic ionic liquids):n(cyclohexene):n(H2O2) = 0.02:0.02:1:4.4, and the yield of adipic acid was 96% under the reaction scale of 10 mmol. The catalytic system can be easily recovered and reused for four reaction runs without significant loss of catalytic activity. Simple operation of the catalyst system and avoidance of the emission of nitrous oxide are the benefits of this work.  相似文献   

19.
It was studied how the conditions of heat treatment of a [Zn(H2O)(O2C5H7)2] solution in isoamyl alcohol at 120–140°C for 2–60 min affect the precursor decomposition mechanism and the characteristics of the obtained nanocrystalline zinc oxide. In all the cases, the product was a crystalline substance with the wurtzite structure and a size of crystallites of 14–18 nm, which was independent of the synthesis conditions. The thermal behavior and microstructure of the separated and dried nanostructured ZnO powder were investigated. It was determined how the duration and temperature of the heat treatment of the precursor solution affects the microstructure of ZnO coatings dip-coated onto glass substrates using dispersions produced at 120 and 140°C. The nanosized ZnO application procedure was shown to be promising for creating a gas-sensing layer of chemical gas sensors for detecting 1% H2 (\(R_0 /R_{H_2 } \) was 58 ± 2 at an operating temperature of 300°C) and 4 ppm NO2 (\(R_{NO_2 } /R_0\) were 15 ± 1 and 1.9 ± 0.1 at operating temperatures of 200 and 300°C, respectively).  相似文献   

20.
Decomposition of hydrogen peroxide in organic hydrophilic solvents, catalyzed by cobalt(II) palmitate [Co(palm)2], was studied by the method of inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号