首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A molecularly imprinted polymer (MIP) and a nanocomposite prepared from gold nanoparticles (AuNP) and poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) (PEDOT:PSS) were deposited on a screen-printed carbon electrode (SPCE). The nanocomposite was prepared by one-pot simultaneous in-situ formation of AuNPs and PEDOT:PSS and was then inkjet-coated onto the SPCE. The MIP film was subsequently placed on the modified SPCE by co-electrodeposition of o-phenylenediamine and resorcinol in the presence of the antibiotic nitrofurantoin (NFT). Using differential pulse voltammetry (DPV), response at the potential of ~ 0.1 V (vs. Ag/AgCl) is linear in 1 nM to 1000 nM NFT concentration range, with a remarkably low detection limit (at S/N?=?3) of 0.1 nM. This is two orders of magnitude lower than that of the control MIP sensor without the nanocomposite interlayer, thus showing the beneficial effect of AuNP-PEDOT:PSS. The electrode is highly reproducible (relative standard deviation 3.1% for n?=?6) and selective over structurally related molecules. It can be re-used for at least ten times and was found to be stable for at least 45 days. It was successfully applied to the determination of NFT in (spiked) feed matrices and gave good recoveries.
Graphical abstract Schematic representation of a voltammetric sensor for the determination of nitrofurantoin. The sensor is based on a screen-printed carbon electrode (SPCE) modified with an inkjet-printed gold nanoparticles-poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) nanocomposite and a molecularly imprinted polymer.
  相似文献   

2.
A voltammetric sensor is described for the quantitation of propyl gallate (PG). A screen-printed carbon electrode (SPCE) was modified with reduced graphene sheets that were decorated with cobalt diselenide nanoparticles (CoSe2@rGO). The material was hydrothermally prepared and characterized by several spectroscopic techniques. The modified SPCE displays excellent electrocatalytic ability towards PG. Differential pulse voltammetry, with a peak voltage at 0.34 V (vs. Ag/AgCl) has a sensitivity of 12.84 μA·μM?1·cm?2 and a detection limit as low as 16 nM. The method is reproducible, selective, and practical. This method was applied to the determination of PG in spiked meat samples, and the result showed an adequate recovery.
Graphical abstract Schematic of a new method for fast and sensitive electrochemical determination of the food additive propyl gallate in meat
  相似文献   

3.
A strategy was developed for the voltammetric determination of the antibiotic drug levofloxacin (LV) based on a glassy carbon electrode modified with a composite consisting of poly(o-aminophenol) and graphene quantum dots (PoAP/GQD) that was fabricated by electropolymerization. The PoAP/GQD composite provides a large surface area and sensing interface and strongly promotes the oxidation current of LV. Under optimal conditions, the modified GCE displays an oxidation peak current (best measured at a working voltage of 1.05 V vs. SCE) that is linearly related to the levofloxacin concentration in the range from 0.05 to 100 μM, and the detection limit is 10 nM (at an S/N of 3). The method was applied to the determination of levofloxacin in spiked milk samples where is gave recoveries between 96.0 and 101.0 %.
Graphical Abstract We describe a one-step electrochemical polymerization method to synthesize a layer of conductive film of poly(o-aminophenol) and graphene quantum dots (PoAP/GQD) onto a glassy carbon electrode (GCE) surface. The composite film exhibited high electro catalytic activity for the quantitative determination of levofloxacin by stripping voltammetry.
  相似文献   

4.
The authors report on a disposable sensor for the differential pulse anodic stripping voltammetric (DPASV) determination of the ions Zn(II), Pb(II) and Cu(II). Simultaneous detection is accomplished by using a screen-printed carbon electrode (SPCE) co-modified with an in-situ plated bismuth (Bi)) film and gold nanoparticles (AuNPs). The synergistic effect of the Bi film, and the large surface and good electrical conductivity of the AuNPs strongly assist in the co-deposition of the three ions. Four well-defined and fully separated anodic stripping peaks, at 540 mV for Zn(II), 50 mV for Pb(II), 140 mV for Bi(III) and 295 mV for Cu(II), all vs. Ag/AgCl, can be seen. The modified SPCE was characterized by scanning electron microscopy, X-ray diffraction, cyclic voltammetry and electrochemical impedance spectroscopy. Under the optimized conditions, the sensor has a good response to these ions. The detection limits (at an S/N ratio of 3) are 50 ng·L?1 for Zn(II), 20 ng·L?1 for Pb(II), and 30 ng·L?1 for Cu(II). The method was applied to the determination of the 3 ions in spiked lake water samples.
Graphical abstract Schematic of screen-printed carbon electrode (SPCE) co-modified with a bismuth film and gold nanoparticles for electrochemical simultaneous determination of Zn(II), Pb(II) and Cu(II) by differential pulse anodic stripping voltammetric (DPASV).
  相似文献   

5.
A composite consisting of chitosan containing azidomethylferrocene covalently immobilized on sheets of reduced graphene oxide was drop-casted on a polyester support to form a screen-printed working electrode that is shown to enable the determination of nitrite by cyclic voltammetry and chronoamperometry. Both reduction and oxidation of nitrite can be accomplished due to the high electron-transfer rate of this electrode. Under optimal experimental conditions (i.e. an applied potential of 0.7 V vs. Ag/AgCl in pH 7.0 solution), the calibration plot is linear in the 2.5 to 1450 μM concentration range, with an ~0.35 μM limit of detection (at a signal-to-noise ratio of 3). The sensor was successfully applied to the determination of nitrite in spiked mineral water samples, with recoveries ranging between 95 and 101 %.
Graphical abstract We describe the design of ferrocene-functionalized reduced graphene oxide electrode and its electrocatalytic properties towards the determination of nitrite. Compared to a reduced graphene oxide electrode, the sensor exhibits enhanced electrocatalytic activity towards both oxidation and reduction of nitrite.
  相似文献   

6.
A reagentless third generation electrochemical glucose biosensor was fabricated based on wiring the template enzyme glucose oxidase (GOx) with graphene nanoribbons (GN) in order to create direct electron transfer between the co-factor (flavin adenine dinucleotide, FAD) and the electrode. The strategy involved: (i) isolation of the apo-enzyme by separating it from its co-enzyme; (ii) preparation of graphene nanoribbons (GN) by oxidative unzipping of multi-walled carbon nanotubes; (iii) adsorptive immobilization of GNs on the surface of a screen printed carbon electrode (SPCE); (iv) covalent attachment of FAD to the nanoribbons; (v) recombination of the apo-enzyme with the covalently bound FAD to the holoenzyme; and (vi) stabilization of the bio-layer with a thin membrane of Nafion. The biosensor (referred to as GN/FAD/apo-GOx/Nafion/SPCE) is operated at a potential of +0.475 V vs Ag/AgCl/{3 M KCl} in flow-injection mode with an oxygen-free phosphate buffer (pH 7.5) acting as a carrier. The signals are linearly proportional to the concentration of glucose in the range from 50 to 2000 mg?L?1 with a detection limit of 20 mg?L?1. The repeatability (10 measurements, at 1000 mg?L?1 glucose) is ±1.4% and the reproducibility (5 sensors, 1000 mg?L?1 glucose) is ±1.8%. The biosensor was applied to the determination of glucose in human serum.
Graphical abstract Wiring of the apo-enzyme of glucose oxidase (apo-GOx) with graphene nanoribbons (GN) bound to FAD at a screen-printed carbon electrode (SPCE). Cyclic voltammetric and amperometric responses to various glucose concentrations.
  相似文献   

7.
A metal organic framework (MOF) of the type copper(II)-1,3,5-benzenetricarboxylic acid (Cu-BTC) was electrodeposited on electroreduced graphene oxide (ERGO) placed on a glassy carbon electrode (GCE). The modified GCE was used for highly sensitive electrochemical determination of 2,4,6-trinitrophenol (TNP). The fabrication process of the modified electrode was characterized by scanning electron microscopy and electrochemical impedance spectroscopy. Differential pulse voltammetry (DPV) demonstrates that the Cu-BTC/ERGO/GCE gives stronger signals for TNP reduction than Cu-BTC/GCE or ERGO/GCE alone. DPV also shows TNP to exhibit three reduction peaks, the first at a potential of ?0.42 V (vs. SCE). This potential was selected because the other three similarly-structured compounds (2-nitrophenol, 4-nitrophenol, 2,4-dinitrophenol) do not give a signal at this potential. Response is linear in the 0.2 to 10 μM TNP concentration range, with a 0.1 μM detection limit (at S/N =?3) and a 15.98 μA?μM?1?cm?2 sensitivity under optimal conditions. The applicability of the sensor was evaluated by detecting TNP in spiked tap water and lake water samples. Recoveries ranged between 95 and 101%.
Graphical abstract Schematic presentation of an electrochemical sensor that was fabricated by electrodeposition of the metal-organic framework (MOF) of copper(II)-1,3,5-benzenetricarboxylic acid (Cu-BTC) onto the surface of electroreduced graphene oxide (ERGO) modified glassy carbon electrode (GCE). It was applied to sensitive and selective detection of 2,4,6-trinitrophenol (TNP).
  相似文献   

8.
A glassy carbon electrode (GCE) was anodically oxidized by cyclic voltammetry (CV) in 0.05 M sulfuric acid to introduce hydroxy groups on its surface (GCEox). Next, an imidazolium alkoxysilane (ImAS) is covalently tethered to the surface of the GCEox via silane chemistry. This electrode is further modified with graphene oxide (GO) which, dispersed in water, spontaneously assembles on the electrode surface through electrostatic interaction and π-interaction to give an electrode of type GO/ImAS/GCE. Electroreduction of GO and GCEox by CV yields electroreduced GO (erGO) and an electrode of the type erGO/ImAS/GCE. This electrode displays excellent electrocatalytic activity for the oxidation of ascorbic acid (AA), dopamine (DA) and uric acid (UA). Three fully resolved anodic peaks (at ?50 mV, 150 mV and 280 mV vs. Ag/AgCl) are observed during differential pulse voltammetry (DPV). Under optimized conditions, the linear detection ranges are from 30 to 2000 μM for AA, from 20 to 490 μM for UA, and from 0.1 to 5 μM and from 5 μM to 200 μM (two linear ranges) for DA. The respective limits of detection (for an S/N of 3) are 10 μM, 5 μM and 0.03 μM. The GCE modified with erGO and ImAS performs better than a bare GCE or a GCE modified with ImAS only, and also outperforms many other reported electrodes for the three analytes. The method was successfully applied to simultaneous analysis of AA, DA and UA in spiked human urine.
Graphical abstract Differential pulse voltammetric simultaneous determination of ascorbic acid, dopamine and uric acid is achieved on a glassy carbon electrode modified with electroreduced graphene oxide and imidazolium groups, through anodic treatment of glassy carbon and silane chemistry.
  相似文献   

9.
An electrochemical chiral multilayer nanocomposite was prepared by modifying a glassy carbon electrode (GCE) via opposite-charge adsorption of amino-modified β-cyclodextrin (NH2-β-CD), gold-platinum core-shell microspheres (Au@Pts), polyethyleneimine (PEI), and multi-walled carbon nanotubes (MWCNTs). The modified GCE was applied to the enantioselective voltammetric determination of tryprophan (Trp). The Au@Pts enable an effective immobilization of the chiral selector (NH2-β-CD) and enhance the electrochemical performance. Scanning electron microscopy, transmission electron microscopy, UV-vis spectroscopy, FTIR and electrochemical methods were used to characterize the nanocomposite. Trp enantiomers were then determined by differential pulse voltammetry (DPV) (with a peak potential of +0.7 V vs. Ag/AgCl). The recognition efficiency was expressed by an increase in peak height by about 32% for DPV determinations of L-Trp compared to D-Trp in case of a 5 mM Trp solution of pH 7.0. Response was linear in the 10 μM to 5.0 mM concentration range, and the limits of detection were 4.3 μM and 5.6 μM with electrochemical sensitivity of 43.5 μA·μM?1·cm?2 and 34.6 μA·μM?1·cm?2 for L-Trp and D-Trp, respectively (at S/N =?3).
Graphical Abstract Schematic of an electrochemical chiral multilayer nanocomposite composed of multi-walled carbon nanotubes (MWCNTs), polyethyleneimine (PEI), gold-platinum core-shell microspheres (Au@Pt) and amino-modified β-cyclodextrin (NH2-β-CD). It was prepared by modifying a glassy carbon electrode (GCE) for enantioselective voltammetric determination of tryptophan (Trp) enantiomers.
  相似文献   

10.
Disposable screen-printed carbon arrays modified with gold nanoparticles (AuNPs) are described. The AuNP-modified screen-printed carbon arrays, designated as AuNP-SPCE arrays, were characterized by cyclic voltammetry and electrochemical impedance spectroscopy. The AuNP-SPCE arrays display excellent electrocatalytic activity towards lead and copper. Two well-defined and fully resolved anodic stripping peaks, at 20 mV for Pb(II) and at 370 mV for Cu(II), both vs. Ag/AgCl, can be seen. Square wave anodic stripping voltammetry was used to simultaneously analyze Pb(II) and Cu(II) in their binary mixtures in tap water. The linear working range for Pb(II) extends from 10 μg.L?1 to 100 μg.L?1 with a sensitivity of 5.94 μA.μg?1.L.cm?2. The respective data for Cu(II) are a working range from 10 μg.L?1 to 150 μg.L?1 with a sensitivity of 3.52 μA.μg?1.L.cm?2. The limits of detection (based on 3× the baseline noise) are 2.1 ng.L?1 and 1.4 ng.L?1, respectively. In our perception, this array is particularly attractive because Pb(II) and Cu(II) can be determined at rather low working potentials which makes the method fairly selective in that it is not significantly interfered by other electroactive species that require higher reduction potentials.
Graphical abstract Fabrication, characterization and electrochemical behavior of gold nanoparticles modified screen-printed carbon arrays towards lead and copper in tap water.
  相似文献   

11.
We describe a chemical exfoliation method for the preparation of MoS2 nanosheets. The nanosheets were incorporated into poly(3,4-ethylenedioxythiophene) (PEDOT) by electrodeposition on a glassy carbon electrode (GCE) to form a nanocomposite. The modified GCE is shown to enable simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA). Due to the synergistic effect of MoS2 and PEDOT, this electrode displays better properties in terms of electrocatalytic oxidation of AA, DA and UA than pure PEDOT, which is illustrated by cyclic voltammetry and differential pulse voltammetry (DPV). Under optimum conditions and at pH 7.4, the respective sensitivities and best working potentials are as follows: AA: 1.20 A?mM?1?m?2, 30 mV; DA: 36.40 A?mM?1?m?2, 210 mV; UA: 105.17 A?mM?1?m?2, 350 mV. The calculated detection limits for AA, DA and UA are 5.83 μM, 0.52 μM and 0.95 μM, respectively. The modified electrode was applied to the detection of the three species in human urine samples and gave satisfactory results.
Graphical abstract MoS2 nanosheets were prepared by a facile chemical exfoliation method. MoS2 and poly(3,4-ethylenedioxythiophene) nanocomposite modified glassy carbon electrodes were fabricated, which are shown to enable simultaneous determination of ascorbic acid, dopamine and uric acid with high sensitivity and selectivity.
  相似文献   

12.
The authors describe an electrochemical immunoassay for the core antigen of hepatitis C virus (HCV). The method is based on the use of a screen-printed carbon electrode (SPCE) that was modified with a Nafion@TiO2 nanocomposite and loaded with secondary antibody (Ab2) to entrap Celestine Blue (CB). The material has architecture of the type CB/Ab2/Nafion@TiO2. A nanocomposite consisting of graphene, ionic liquid and fullerene was deposited on the SPCE first, and rhodium nanoparticles (RhNPs) were then deposited on the surface of modified electrode in order to immobilize primary antibody (Ab1). The antigen and CB/Ab2/Nafion@TiO2 were conjugated one by one to form a sandwich-type immunocomplex. The signal was obtained by differential pulse voltammetry whose intensity is related to the concentration of the antigen. The assay, if operated at a working voltage of typically 0.35 V (vs. Ag/AgCl) has a response that is linear in the 0.1 to 250 pg?mL?1 HCV core antigen concentration range, and the limit of detection is as low as 25 fg?mL?1. The assay was applied to the determination of the HCV core antigen in spiked human serum samples. In our perception, the method represents a promising platform for the detection of various antigens if appropriate antibodies are available.
Graphical abstract An electrochemical immunoassay for the core antigen of Hepatitis C virus was studied. A nanocomposite consisting of graphene, ionic liquid and fullerene was deposited on the SPCE and rhodium nanoparticles were deposited on the surface of modified electrode in order to immobilize primary antibody. Nafion@TiO2 was loaded with secondary antibody to entrap Celestine Blue.
  相似文献   

13.
A nanocomposite consisting of cetyltrimethylammonium bromide (CTAB), Fe3O4 nanoparticles and reduced graphene oxide (CTAB-Fe3O4-rGO) was prepared, characterized, and used to modify the surface of a glassy carbon electrode (GCE). The voltammetric response of the modified GCE to 4-nonylphenol (NPh) was investigated by cyclic voltammetry and revealed a strong peak at around 0.57 V (vs. SCE). Under optimum conditions, the calibration plot is linear in the ranges from 0.03 to 7.0 μM and from 7.0 to 15.0 μM, with a 8 nM detection limit which is lower that that of many other methods. The modified electrode has excellent fabrication reproducibility and was applied to the determination of NPh in spiked real water samples to give recoveries (at a spiking level of 1 μM) between 102.1 and 99.1%.
Graphical abstract A nanocomposite consisting of cetyltrimethylammonium bromide (CTAB), Fe3O4 nanoparticles and reduced graphene oxide (CTAB-Fe3O4-rGO) was prepared and used to modify the surface of a glassy carbon electrode (GCE) for the differential pulse voltammetric (DPV) determination of 4-nonylphenol (NPh).
  相似文献   

14.
The authors describe a disposable electrochemical immunosensor strip for the detection of the Japanese encephalitis virus (JEV). The assay is based on the use of a screen printed carbon electrode (SPCE) modified with carbon nanoparticles (CNPs) that were prepared from starch nanoparticles and deposited on the SPCE working electrode whose surface was functionalized with 3-aminopropyl triethoxysilane. Next, antibody of JEV was immobilized on the surfaces of the CNPs. The analytical performance of immunosensor strip was characterized using cyclic voltammetry (with hexacyanoferrate as the redox probe) and electrochemical impedance spectroscopy. The deposition of CNPs enhances the electron transfer kinetics and current intensity of the SPCE by 63% compared to an unmodified SPCE. Under optimized conditions, the calibration plot is linear within the 5–20 ng·mL?1 JEV concentration range, the limit of detection being 2 ng·mL?1 (at an S/N ratio of 3), and the assay time is 20 min. This immunosensor strip was successfully applied to the detection of JEV in human serum samples. It represents a cost-effective alternative to conventional diagnostic tests for JEV.
Graphical abstract A disposable carbon nanoparticles modified screen printed carbon electrode (SPCE) immunosensor strip for Japanese encephalitis virus (JEV) detection is described. A limit of detection of 2 ng·mL?1 and an assay time of 20 min were achieved.
  相似文献   

15.
The authors describe the fabrication of an interconnected edge-exposed graphene nanostructure via chemical vapor deposition (CVD) of foliated graphene onto a network of alumina nanofibers. The fibers such obtained are shown to enable ultra-sensitive voltammetric determination of dopamine (DA), uric acid (UA) and ascorbic acid (AA). The electrode displays powerful and persistent electro oxidative behavior and excellent electron transport properties. Cyclic voltammetry and differential pulse voltammetry demonstrate excellent selectively and sensitivity for AA, DA and UA, with typical peaks at ?0.08 V, +0.19 V, and +0.34 V (vs. SCE), respectively. Under optimum conditions, the calibration plots are linear in the 1–80 μM range for DA, in the 1–60 μM range for UA, and in the 0.5–60 μM range for UA, with detection limits of 0.47 μM, 0.28 μM and 0.59 μM, respectively. The sensor was successfully applied to the simultaneous determination of DA and UA in the presence of AA in spiked urine sample.
Graphical abstract Material with high density of graphene foliates grown over highly aligned nano-dimensional ceramic fibers is used as electrode for simultaneous highly sensitive electrochemical determination of DA in the presence of UA and AA with a considerably low limit of detection.
  相似文献   

16.
Core-shell Au@Ag nanorods (Ag@GNRs) were synthesized and utilized to construct a voltammetric biosensor for trichloroacetic acid (TCA). The biosensor was prepared by immobilizing hemoglobin (Hb) on a glassy carbon electrode (GCE) that was modified with the Ag@GNRs. Cyclic voltammetry revealed a pair of symmetric redox peaks, indicating that direct electron transfer occurs at the Hb on the Ag@GNR-film. The electron transfer rate constant is as high as 2.32 s?1. The good electrocatalytic capability and large surface area of the Ag@GNR-film is beneficial in terms of electron transfer between Hb and the underlying electrode. The modified GCE, best operated at ?0.4 V (vs. SCE), exhibits electrocatalytic activity toward TCA in the 0.16 μM to 1.7 μM concentration range, with a 0.12 μM detection limit (at an S/N ratio of 3).
Graphical abstract Core-shell Au@Ag nanorods (Ag@GNRs) were synthesized and used to immobilize hemoglobin to construct an effective biosensor for trichloroacetic acid.
  相似文献   

17.
The authors describe a screen-printed and disposable electrode for the nonenzymatic determination of hydrogen peroxide (H2O2). It is based on the controllable synthesis and deposition of silver nanoparticles (AgNPs) of different sizes on a nanocomposite consisting of reduced graphene oxide and cerium (IV) oxide (rGO@CeO2) that was placed on a screen-printed electrode (SPE). X-ray powder diffractometry and Fourier transform infrared spectroscopy were used to characterize the composition of the hybrid nanomaterials. Electrochemical impedance spectroscopy and scanning electron microscopy were employed to study the interfacial properties and morphologies of different electrodes. The sensor was investigated by cyclic voltammetry and chronoamperometry (i-t plots). After optimization, the modified SPE showed a good performance towards the electrocatalytic reduction of H2O2, best at a working potential of ?0.3 V (vs. Ag/AgCl). Features of merit include a broad linear analytical range extending from 0.5 μM to 12 mM, and a limit of detection as low as 0.21 μM (at an S/N ratio of 3). The sensor is simple, quick, stable and reliable. It was applied to the determination of H2O2 in (spiked) contact lens care solutions with good accuracy and recovery.
Graphical abstract An enhanced sensing platform for nonenzymatic hydrogen peroxide (H2O2) based on controllable synthesis of differently sized silver nanoparticles (AgNPs) loaded on reduced graphene oxide and cerium(IV) oxide (rGO@CeO2) nanocomposites to sensitize screen-printed electrode (SPE) was fabricated.
  相似文献   

18.
This study presents a method for the selective determination of Hg(II) using electromembrane extraction (EME), followed by square wave anodic stripping voltammetry (SWASV), using a gold nanoparticle-modified glassy carbon electrode, (AuNP/GCE). By applying an electrical potential of typically 60 V for 12 min through a thin supported liquid membrane (1-octanol), Hg(II) ions are extracted from a donor phase (i.e., the sample solution) to an acidic acceptor solution (15 μL) placed in the lumen of a hollow fiber. The influences of experimental parameters during EME were optimized using face-centered central composite design. The calibration plot, established at a working voltage of 0.55 V (vs. Ag/AgCl), extends from 0.2 to 10 μg.L?1 of Hg(II). The limit of detection, at a signal to noise ratio of 3, is 0.01 μg.L?1 and the relative standard deviations (for 5 replicate determinations at 3 concentration levels) are between 7.5 and 8.7 %. The method was successfully applied to the determination of Hg(II) in spiked real water samples to give recoveries ranging from 89 to 97 %. The results were validated by cold vapor atomic absorption spectroscopy.
Graphical abstract Hg(II) ions were extracted from a donor phase into an acidic acceptor phase (15 μL) placed in the lumen of a hollow fiber using electromembrane extraction. The acceptor phase was then analyzed using anodic stripping voltammetry.
  相似文献   

19.
A composite material consisting of multiwalled carbon nanotubes and palladium containing particles was synthesized and applied to the preparation of bulk-modified screen-printed carbon electrodes (Pd-MWCNT-SPCE) and surface-modified screen-printed carbon electrodes (Pd-MWCNT/SPCE). They were characterized by cyclic voltammetry and hydrodynamic chronoamperometry in solution of pH 7.5. Both electrodes were then modified with glucose oxidase (GOx) by drop-coating a solution of GOx and Nafion® on their surface. Glucose can be determined via enzymatically formed H2O2. In an alternative approach, gold nanoparticles (5 nm) were incorporated into the biolayer of the electrodes. The resulting electrodes of type GOx/Pd-MWCNT-SPCE and GOx-Au/Pd-MWCNT-SPCE showed acceptable analytical performance at working potentials between ?0.20 V and ?0.50 V in case of hydrodynamic chronoamperometry. Both electrodes can be operated best at a working potential of ?0.40 V vs SCE, with acceptable linearity of the methods in sub mM concentration ranges and with LOQs of 0.14 mM and 0.07 mM for glucose for the GOx/Pd-MWCNT-SPCE and GOx-Au/Pd-MWCNT-SPCE, respectively. Incorporation of gold nanoparticles prolongs the operational lifetime of the electrodes by two weeks. The GOx/Pd-MWCNT-SPCE based method was applied to the determination of glucose in multifloral honey, and the GOx-Au/Pd-MWCNT-SPCE method to the determination of glucose in blood serum. In both cases there was a good agreement with the results obtained by commercially available equipment for determination of glucose.
Graphical abstract Schematic of a screen printed carbon biosensor based on the use of multiwalled carbon nanotubes modified with palladium-containing particles and glucose oxidase. It can be applied to the amperometric determination of glucose in blood serum and multifloral honey
  相似文献   

20.
Titanium dioxide nanoparticles (NPs) were synthesized by a sol-gel method from hexafluorotitanic acid using poly(ethylene glycol) as a capping agent. The crystal structure and morphology of the NPs were characterized by X-ray diffraction, FESEM, and TEM. The NPs were used to modify a graphite paste electrode for simultaneous determination of uric acid (UA) and guanine (GU). The effect of calcination temperature on crystal structure and electrocatalytic activity was investigated. The electrochemical responses to UA and GU at bare GP, TiO2–350/GP, and TiO2–600/GP electrodes were compared. The DPV oxidation peaks of UA and GU were found to be strongest at around 304 and 673 mV, respectively, against Ag/AgCl reference electrode, and this are well separated for effective simultaneous determination. UA and GU can be simultaneously determined by this method. Response is linear within the range 0.1–500 μM and 0.1–40 μM for UA and GU, respectively. The detection limits are 70 nM for UA and 50 nM for GU (at an S/N? ratio of?3). The TiO2–600/GP electrode showed excellent analytical performance when analyzing spiked urine and serum samples.
Graphical abstract A graphical representation of cubic TiO2 nanoparticle formation during hydrolysis through sol-gel process.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号