首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A nanoporous coordination polymer (NPCP) was prepared from palladium(II) chloride and 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole and is shown to act as a peroxidase mimetic. It can catalyze the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) by H2O2 which is formed on enzymatic oxidation of glucose by glucose oxidase. Based on these findings, a sensitive glucose test was worked out at 652 nm where the intensity if the greenish-blue product is related to the actual concentration of glucose. Figures of merit include (a) rather low Km value (30 μM) which evidences the strong binding affinity of the NPCP toward glucose, (b) a high v(max) (8.5 M·s?1), (c) a 47 nM detection limit, (d) a lifetime of a month, (e) a wide working pH range (2–10), and (f) a 25–80 °C temperature range. The assay was applied to non-invasive determination of glucose assay in tear, saliva where the detection limits are found to be 61 and 91 nM, respectively.
Graphical abstract DSchematic of the mechanism of the peroxidase like catalytic activity of AHMT-Pd NPCP that was applied in a selective colorimetric method for glucose detection based on TMB oxidation in the presence of enzymatically generated H2O2.
  相似文献   

2.
We describe a sensitive and selective colorimetric method for the determination of the activity of the enzyme acetylcholinesterase (AChE) and its inhibitors. Detection is based on the fact that acetylthiocholine iodide (ATCI) catalyzes the oxidation of the substrate 3,3′,5,5′-tetramethylbenzidine (TMB) by H2O2 to form a blue product (ox-TMB) with an absorption peak at 652 nm, but that oxidation is suppressed if ACTI previously is hydrolyzed by AChE to form thiocholine which decolorizes ox-TMB. In the presence of inhibitor, the activity of AChE is inhibited, thereby inducing the recovery of the blue coloration. Based on these findings, a highly sensitive method is developed for the determination of AChE and its inhibitors. The assay only requires mixing of buffer, solutions of ATCI, TMB, H2O2 and a sample containing AChE and photometric measurement. It works in the 0.05 to 5 mU?mL?1 enzyme activity range and has a detection limit as low as 30 μU?mL?1. The inhibitor neostigmine causes 50 % enzyme inhibition in 14.5 nM concentration. This analytical system has a wide scope in that it may be applied to the determination of the activity of various other hydrolases with proper substrates.
Graphical abstract The blue product formed by the iodide-catalyzed oxidation of 3,3′5,5′-tetramethylbenzidine (TMB) by hydrogen peroxide is decolorized if acetylthiocholine iodide (ATCI) is hydrolyzed by acetylcholinesterase (AChE) to form thiocholine. If, however, AChE is inhibited, color formation will take place again.
  相似文献   

3.
Iridium nanoparticles (IrNPs) with intrinsic oxidase-like activity were synthesized by using sodium citrate as the stabilizer and NaBH4 as the reducing agent. The IrNPs have an average diameter of 2.5 ± 0.5 nm and exhibit excellent oxidase-like property. Under the catalytic action of the IrNPs, 3,3′,5,5′-tetramethylbenzidine (TMB) is oxidized by dissolved oxygen (DO) to form a blue product with an absorption maximum at 652 nm. The catalytic activity is ascribed to the production of superoxide anion radical (O2ˉ?). The chromogenic reaction is exploited for the determination of DO. The method exhibits a wide calibration range from 12.5 to 257.5 μM of DO and a limit of detection as low as 4.7 μM. Compared to other methods, this method presented here shows improved precision and faster response time.
Graphic abstract Iridium nanoparticles (IrNPs) stabilized by sodium citrate exhibit oxidase-like activity and can effectively catalyze dissolved oxygen (DO) by oxidizing 3,3′,5,5′-tetramethylbenzidine (TMB) to form a blue product.
  相似文献   

4.
The authors describe a colorimetric method for the determination of Hg(II) ions by exploiting the peroxidase-lile activity of few-layered MoS2 nanosheets (MoS2-NSs). These were prepared by sonication-induced exfoliation of bulk MoS2 crystals in aqueous surfactant solution. The MoS2-NSs were found to acts as a peroxidase mimic that is capable of oxidizing the substrate 3,3′,5,5′-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide (H2O2) to give a blue product with an absorption maximum at 652 nm. The addition of Hg(II) strongly accelerates the kinetics of this reaction. It is shown that the enzyme mimic possesses a high affinity for TMB and a lower pseudo-Michaelis-Menten constant. The stimulating effect of Hg(II) is seriously influenced by the change of surface charge. The use of nanosheets covered with (negatively charged) polystyrene sulfonate results in a decrease in the formation of blue dye, while those covered with (cationic) poly(diallyldimethyl ammonium) ions cause a small increase. Under optimal conditions, the peroxidase-like activity of MoS2-NSs is affected by Hg(II) in the 2.0 to 200 μM concentration range. The method has a detection limit (LOD) of 0.5 μM which is much below the allowed level in cosmetics (1 ppm; ca. 5 μM). The method display excellent sensitivity, selectivity and stability. It was applied to the determination of total mercury in cosmetic samples, and results compared well with results obtained by ICP-AES.
Graphical abstract A spectrophotometric assay for mercury?-?(II) determination is reported that is based on Hg2+-stimulation effect on the 3,3′,5,5′-tetramethylbenzidine (TMB)-H2O2 reaction system catalyzed by MoS2 nanosheets.
  相似文献   

5.
Ionic liquid coated nanoparticles (IL-NPs) consisting of zero-valent iron are shown to display intrinsic peroxidase-like activity with enhanced potential to catalyze the oxidation of the chromogenic substrate 3,3′,5,5′-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide. This results in the formation of a blue green colored product that can be detected with bare eyes and quantified by photometry at 652 nm. The IL-NPs were further doped with bismuth to enhance its catalytic properties. The Bi-doped IL-NPs were characterized by FTIR, X-ray diffraction and scanning electron microscopy. A colorimetric assay was worked out for hydrogen peroxide that is simple, sensitive and selective. Response is linear in the 30–300 μM H2O2 concentration range, and the detection limit is 0.15 μM.
Graphical abstract Schematic of ionic liquid coated iron nanoparticles that display intrinsic peroxidase-like activity. They are capable of oxidizing the chromogenic substrate 3,3′,5,5′-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide. This catalytic oxidation generated blue-green color can be measured by colorimetry. Response is linear in the range of 30–300 μM H2O2 concentration, and the detection limit is 0.15 μM.
  相似文献   

6.
A bimetallic metal-organic framework of the type MOF(Co/2Fe), synthesized by a hydrothermal method, is demonstrated to exhibit peroxidase-like activity and oxidase-like activity. The material catalyzes the oxidation of 3,3,5,5-tetramethylbenzidine (TMB) to produce a blue product both in the absence and presence of H2O2. Its catalytic activity strongly depends on temperature and the solution pH value. With its dual enzyme mimetic activity, MOF(Co/2Fe) has the advantages of low cost, good stability, ease of preparation, and attractive Michaelis-Menten behavior. The mechanisms and kinetics of the pseudo-enzymatic activity were studied in some detail. A colorimetric method was developed for determination of H2O2 that is based on the peroxidase-like activity of MOF(Co/2Fe). Under the optimal conditions, the absorbance of oxidized TMB at 652 nm increases linearly in the 10 to 100 μM H2O2 concentration range, with a 5 μM limit of detection.
Graphical Abstract A bimetallic metal-organic framework of the type MOF(Co/2Fe) exhibits peroxidase-like activity and oxidase-like activity. The material catalyzes the oxidation of 3,3,5,5-tetramethylbenzidine (TMB) to produce a blue product in the presence and absence of H2O2.
  相似文献   

7.
Platinum nanoparticles (PtNPs) were uniformly grown on the surface of gold nanorods (AuNRs) by a laser irradiation procedure. Transmission electron microscopy confirmed that the PtNPs are uniformly grown on the surface of the AuNRs. The formation of PtNPs on the AuNRs leads to a red-shift of the absorption maximum from 734 nm to 766 nm. In addition, the efficiency of surface enhanced Raman scattering (SERS) is increased, but the photothermal conversion efficiency is decreased compared to pure AuNRs. The result indicates that electron transfer occurs between gold and platinum. The peroxidase mimicking effect of PtNPs, AuNRs and Au/Pt NRs by catalyzing the oxidation of colorless 3,3’,5,5’-tetramethylbenzidine (TMB) to blue oxidized 3,3’,5,5’-tetramethylbenzidine (oxTMB; a quinone) in the presence of H2O2. The catalytic activity of Au/Pt NRs is higher than that of sole AuNRs or PtNPs by factors of 4.2 and 2.1, respectively. Thus, Au/Pt NRs have been used for the detection of peroxide and the limit of detection is 0.04 μM. This work provides an approach to integrate the peroxidase mimicking effect with SERS enhancement for potential application in detection.
Graphical abstract A schematic diagram for the laser-induced growth of Au/Pt NRs and the colorimetric determination of hydrogen peroxide concentration with their peroxidase mimicking properties. The limit of detection is 0.04 μM based on the use of Au/Pt NRs as a catalyst.
  相似文献   

8.
The authors report that sulfide ions are capable of inhibiting the peroxidase-like activity of copper nanoclusters (CuNCs). The catalytic activity of CuNCs toward the oxidation of the chromogenic substrate 3,3′,5,5′-tetramethylbenzidine by H2O2 is remarkably decreased in the presence of sulfide. Based on this finding, a colorimetric assay was developed for the rapid determination of sulfide. Best operated at a wavelength of 652 nm, it has a 0.5 μM detection limit. The method is highly selective and has been successfully applied to the quantification of sulfide in environmental water samples.
Graphical abstract The catalytic activity of CuNCs toward the oxidation of 3,3′,5,5′-tetramethylbenzidine by H2O2 is remarkably decreased in the presence of sulfide ions. This finding has been applied to design a method for colorimetric quantification of sulfide ions in environmental samples.
  相似文献   

9.
We report on the synthesis of cobalt dihydroxide [Co(OH)2] nanorods and their deposition on a 3-dimensional graphene network via chemical bath deposition. The structural characterization reveals deposited Co(OH)2 to consist of flower-like nanorods on a 3-dimensional graphene foam. The nanocomposite was used for glucose sensing by electrocatalytic oxidation of glucose in 1 M KOH solution. Cyclic voltammetry and amperometric studies revealed a high sensitivity for glucose (3.69 mA mM?1 cm?2) and a 16 nM detection limit. The nanocomposite offers a large effective surface (11.4 cm2) and is very selective for glucose over potentially interfering materials such as dopamine, ascorbic acid, lactose, fructose and urea, not the least due to a relatively low working potential of 0.6 V (vs. Ag/AgCl). The high sensitivity, low detection limit and very good selectivity of free-standing nanocomposite electrodes are attributed to the synergistic effect of (a) the good electrocatalytic activity of the NRs, and (b) the large surface area with high conductivity offered by the 3D graphene foam.
Graphical Abstract Cobalt hydroxide [Co(OH)2] nanorods were deposited on three dimensional graphene (3DG) by a chemical bath deposition method, and the resulting material was used as an electrode for non-enzymatic and specific sensing of glucose in 1 M KOH solution.
  相似文献   

10.
Nitrogen- and iron-containing carbon dots (N,Fe-CDs) are synthesized by hydrothermal treatment of branched polyethylenimine (BPEI) and hemin at 180 °C. The N,Fe-CDs are mainly doped with nitrogen and trace amounts of iron(III). The N,Fe-CDs also display intrinsic fluorescence with excitation/emission maxima at 365/452 nm and a quantum yield of 27 %. The nanodots are shown to act as peroxidase mimics by catalyzing the oxidation of tetramethylbenzidine (TMB) by hydrogen peroxide to form a blue product whose quantity can be determined by photometry at 652 nm. This was exploited to design colorimetric and fluorometric assays for dopamine (DA). The colorimetric assay is based on the oxidation of DA by H2O2 in presence of the N,Fe-CDs and TMB. It has an instrumental detection limit of 40 nM (at an S/N ratio of 3), and a visual detection limit of 0.4 μM. The fluorometric assay is based on an inner filter effect that is caused by the formation of oxidized TMB which overlaps (and absorbs) the emission of the N,Fe-CDs located at 452 nm. The fluorometric detection limit is as low as 20 nM (at an S/N ratio of 3).
Graphical abstract Carbon dots containing nitrogen and iron (N,Fe-CDs) were synthesized by hydrothermal treatment of branched polyethylenimine and hemin. The N,Fe-CDs display excellent fluorescent properties, peroxidase-like activity and potential application in colorimetric and fluorometric detection of dopamine.
  相似文献   

11.
The authors have coupled ultrafine α-Fe2O3 nanocrystals to N-doped graphene (NG) to obtain a novel material for use in a photoelectrode. The presence of NG is shown to strongly affect the morphology and size of the α-Fe2O3 nanocrystals formed on the NG sheets, and to improve their photoelectrochemical (PEC) activity. Interestingly, the PEC performance of the nanocomposite is closely correlated to the size of the α-Fe2O3 nanocrystals in that small nanocrystals display better PEC properties. The photocurrent of α-Fe2O3-NG is nearly 3.3-fold stronger than that of α-Fe2O3 nanocrystals. Based on the remarkable PEC performance of this nanocomposite, a PEC sensor was constructed for the sensitive determination of 1,4-dihydroxybenzene (HQ). Its photocurrent increases with the HQ concentration in the range from 3.0 nM to 3.3 μM, and the detection limit is 1.0 nM (at an S/N ratio of 3). In our perception, the study presented here can serve as a basis for a better understanding of the relationship between morphologies and PEC performance of such nanomaterials. Conceivably, it may be extended to other PEC sensing system and to other fields associated with nanotechnology.
Graphical abstract Ultrafine α-Fe2O3 nanocrystals were prepared via coupling with N-doped graphene (NG) substances (α-Fe2O3-NG). They exhibit superior photoelectrochemical (PEC) performance and have been successfully utilized for PEC-based sensing.
  相似文献   

12.
The authors report that the peroxidase-like activity of Au@Pt core-shell nanohybrids (Au@PtNHs) is selectively inhibited by cysteine. This finding has led to  a highly sensitive colorimetric assay for cysteine that is based on the nanohybrid-catalyzed oxidation of TMB by H2O2 to form a blue product. The method has a detection limit of 5.0 nM and a linear range from 10 nM to 20 μM. The assay is highly selective over other amino acids. It was successfully applied to the determination of cysteine in an injection containing a mixture of amino acids.
Graphical abstract The peroxidase-like activity of Au@Pt core-shell nanohybrids (Au@PtNHs) is selectively inhibited by cysteine, enabling the determination of cysteine.
  相似文献   

13.
A voltammetric sensor is described for the determination the antibiotic sulfamethoxazole (SMZ). It is based on the use of a glassy carbon electrode (GCE) modified with a nanocomposite prepared from graphitic carbon nitride and zinc oxide (g-C3N4/ZnO). The nanorod-like ZnO nanostructure were synthesized sonochemically. The g-C3N4/ZnO nanocomposite was then prepared by mixing g-C3N4 with ZnO, followed by ultrasonication. The morphology and structure of the nanocomposite were characterized by X-ray diffraction, Fourier-transform infrared spectroscopy and transmission electron microscopy. Under the optimal conditions, the response of the electrode, typically measured between 0.8 and 0.9 V (vs. Ag/AgCl), increases linearly in the 20 nM to 1.1 mM SMZ concentration range, and the lower detection limit is 6.6 nM. This is better than that of many previously reported sensors for SMZ. The modified electrode is highly selective, well reproducible and maintains its activity for at least 4 weeks. It was applied to the determination of SMZ in spiked human blood serum samples in with satisfactory results.
Graphical abstract Schematic presentation of the voltammetric sensor for sulfamethoxazole. It consists of a glassy carbon electrode modified with a nanocomposite prepared from graphitic carbon nitride (g-C3N4/ZnO) that was supported with zinc oxide nanorods.
  相似文献   

14.
A binary nanocomposite of type copper tungstate and polyaniline (CuWO4@PANI) is described that was obtained by single step polymerization on the surface of a glassy carbon electrode (GCE). The resulting electrode is shown to be a viable tool for voltammetric sensing of quercetin (Qn) in blood, urine and certain food samples. The nanocomposite was characterized by UV-visible absorption spectroscopy, Fourier-transform infrared spectroscopy, thermogravimetric analysis, X-ray diffraction and high-resolution transmission electron microscopy. Differential pulse voltammetry was applied to quantify Qn, typically at the relatively low working potential of 0.15 V (vs. Ag/AgCl). The modified GCE has a wide analytical range (0.001–0.500 μM) and a low detection limit (1.2 nM). The sensor is reproducible, selective and stable. This makes it suitable for determination of Qn in real samples without complicated sample pretreatment.
Graphical abstract Schematic of a copper tungstate and polyaniline nanocomposite modified glassy carbon electrode for voltammetric determination of quercetin in real samples.
  相似文献   

15.
We report on a method for highly sensitive and selective colorimetric determination of Hg(II) via a signal amplification strategy. Cu@Au nanoparticles (NPs) are found to exhibit intrinsic peroxidase-like activity and can catalyze the oxidation of 3,3′,5,5′-tetramethylbenzidine by H2O2. This is accompanied by a solution color change from colorless to green (with an absorption peak at 655 nm). The catalytic capability of the Cu@Au NPs (pale green) is strongly enhanced by a Cu@Au-Hg trimetallic amalgam (bluish), and this effect can be applied directly to the determination of Hg(II). The limit of detection as observed with the unaided eye is 10 nM, which is at least one order of magnitude lower than that of the known AuNP-based colorimetric assay. Due to excellent specificity of the amalgamation process, the assay is highly selective for Hg(II) and is not interfered by other metal ions in up to 0.5 μM concentrations. This assay was successfully applied to the determination of Hg(II) in tap water. In view of these advantages, we expect this colorimetric method to become an attractive tool for the quantitation of Hg(II) in biological, environmental, and food samples.
Graphical Abstract Cu@Au nanoparticles (NPs) exhibit intrinsic peroxidase-like activity and can catalyze the oxidation of tetramethylbenzidine (TMB) by H2O2. This is accompanied by a color change of the solution from colorless to green.
  相似文献   

16.
Graphite-like carbon nitride ? Fe3O4 magnetic nanocomposites were synthesized by a chemical co-precipitation method. The nanocomposites were characterized by transmission electron microscopy, X-ray diffraction, FTIR spectroscopy, X-ray photoelectron spectroscopy and magnetization hysteresis loops. The nanocomposites exhibit enhanced peroxidase-like activity (compared to that of graphite-like carbon nitride or Fe3O4 NPs). More specifically, they are capable of catalyzing the oxidation of different peroxidase substrates (such as TMB, ABTS or OPD) by H2O2 to produce the typical color reactions (blue, green or orange). The nanocomposites retain their magnetic properties and can be separated by an external magnet. On the basis of these findings, a highly sensitive and selective method was applied to the determination of H2O2 and glucose (by using glucose oxidase). It was successfully applied to the determination of glucose in (spiked) human serum. Compared to other nanomaterial-based peroxidase mimetics, the one described here provides distinctly higher sensitivity for both H2O2 and glucose, with detection limits as low as 0.3 μM and 0.25 μM, respectively.
Graphical abstract The magnetic carbon nitride nanocomposite exhibits enhanced peroxidase-like activity that is much larger than that of graphite-like carbon nitride or Fe3O4 NPs alone. This finding was applied to design a highly sensitive and selective colorimetric assay for H2O2 and glucose.
  相似文献   

17.
The authors report on a low temperature method for large-scale fabrication of cuprous oxide nanocubes deposited on nitrogen-doped reduced graphene oxide (Cu2O/N-RGO). The material was deposited in a glassy carbon electrode (GCE) where it is found to display enhanced electrocatalytic activity for oxidation of diethylstilbestrol (DES). The morphology and composition of Cu2O/N-RGO were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and energy-dispersive spectroscopy. The results demonstrate that the RGO is doped with 3.5% of nitrogen (atomic ratio), and that nanostructured Cu2O particles with controlled cubical morphology and an average size of about 450 nm have been homogeneously deposited on the surface of N-RGO sheets. The oxidation peak of DES was recorded at 0.315 V (vs. saturated calomel electrode) using differential pulse voltammetry. Under the optimal conditions, the modified GCE displays a linear response in the 0.3 to 150 μM DES concentration range, and the limit of detection is 10 nM. The method was applied to the determination of DES in spiked milk, meat and urine samples and gave excellent selectivity, stability and reproducibility.
Graphic abstract A nanocomposite consisting of Cu2O nanocubes/N-doped reduced graphene oxide (Cu2O/N-RGO) for the electrochemical determination of diethylstilbestrol (DES). The Cu2O/N-RGO modified electrode displays a linear response in the 0.3 to 150 μM DES concentration range. The method was applied to the determination of DES in spiked milk, meat and urine samples
  相似文献   

18.
A nanocomposite consisting of a few layers of graphene (FLG) and tin dioxide (SnO2) was prepared by ultrasound-assisted synthesis. The uniform SnO2 nanoparticles (NPs) on the FLG were characterized by X-ray diffraction in terms of lattice and phase structure. The functional groups present in the composite were analyzed by FTIR. Electron microscopy (HR-TEM and FE-SEM) was used to study the morphology. The effect of the fraction of FLG present in the nanocomposite was investigated. Sensitivity, selectivity and reproducibility towards resistive sensing of liquid propane gas (LPG) was characterized by the I-V method. The sensor with 1% of FLG on SnO2 operated at a typical voltage of 1 V performs best in giving a rapid and sensitive response even at 27 °C. This proves that the operating temperature of such sensors can be drastically decreased which is in contrast to conventional metal oxide LPG sensors.
Graphical abstract Schematic of a room temperature gas sensor for liquefied petroleum gas (LPG). It is based on the use of a few-layered graphene (1 wt%)/SnO2 nanocomposite that was deposited on an interdigitated electrode (IDEs). A sensing mechanism for LPG detection has been established.
  相似文献   

19.
The authors describe a dye-sensitized photoelectrochemical immunoassay for the tumor marker carcinoembryonic antigen (CEA). The method employs the rhodamine dye Rh123 with red color and absorption maximum at 500 nm for spectral sensitization, and a 3D nanocomposite prepared from graphene oxide and MoS2 acting as the photoelectric conversion layer. The nanocomposite with flower-like 3D architectures was characterized by transmission electron microscopy, scanning electron microscopy, X-ray powder diffraction, and UV-vis diffuse reflectometry. A photoelectrochemical sandwich immunoassay was developed that is based on the use of the nanocomposite and based on the specific binding of antibody and antigen, and by using a secondary antibody labeled with Rh123 and CdS (Ab2-Rh123@CdS). Under optimal conditions and at a typical working voltage of 0 V (vs. Hg/HgCl2), the photocurrent increases linearly 10 pg mL?1 to 80 ng mL?1 CEA concentration range, with a 3.2 pg mL?1 detection limit.
Graphical abstract Flower-like GO-MoS2 complex with high efficiency of electron transport was synthesized to construct photoelectrochemical platform. The sandwich-type immunoassay was built on this platform based on specific binding of antigen and antibody. Carcinoembryonic antigen in sample was detected sensitively by using sensitization of rhodamine dye Rh123 as signal amplification strategy.
  相似文献   

20.
We describe a chemical exfoliation method for the preparation of MoS2 nanosheets. The nanosheets were incorporated into poly(3,4-ethylenedioxythiophene) (PEDOT) by electrodeposition on a glassy carbon electrode (GCE) to form a nanocomposite. The modified GCE is shown to enable simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA). Due to the synergistic effect of MoS2 and PEDOT, this electrode displays better properties in terms of electrocatalytic oxidation of AA, DA and UA than pure PEDOT, which is illustrated by cyclic voltammetry and differential pulse voltammetry (DPV). Under optimum conditions and at pH 7.4, the respective sensitivities and best working potentials are as follows: AA: 1.20 A?mM?1?m?2, 30 mV; DA: 36.40 A?mM?1?m?2, 210 mV; UA: 105.17 A?mM?1?m?2, 350 mV. The calculated detection limits for AA, DA and UA are 5.83 μM, 0.52 μM and 0.95 μM, respectively. The modified electrode was applied to the detection of the three species in human urine samples and gave satisfactory results.
Graphical abstract MoS2 nanosheets were prepared by a facile chemical exfoliation method. MoS2 and poly(3,4-ethylenedioxythiophene) nanocomposite modified glassy carbon electrodes were fabricated, which are shown to enable simultaneous determination of ascorbic acid, dopamine and uric acid with high sensitivity and selectivity.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号