共查询到20条相似文献,搜索用时 15 毫秒
1.
Ying-Jie Zhou Min Xiao Shuan-Jin Wang Dong-Mei Han Yi-Xin Lu Yue-Zhong Meng 《中国化学快报》2013,24(4):307-310
The Mo-promoted Cu-Fe bimetal catalysts were prepared and used for the formation of dimethyl carbonate(DMC) from CO2 and methanol.The catalysts were characterized by X-ray diffraction(XRD), temperature programmed reduction(TPR),laser Raman spectra(LRS),energy dispersive spectroscopy (EDS) and temperature programmed desorption(TPD) techniques.The experimental results demonstrated that the Mo promoters can decrease the reducibility and increase the dispersion of Cu-Fe clusters.The concentration balance of base-acid sites can be readily adjusted by changing the Mo content.The moderate concentration balance of acid and base sites was in favor of the DMC formation. Under optimal experimental conditions,the highest methanol conversion of 6.99%with a DMC selectivity of 87.7%can be obtained when 2.5 wt%of Mo was loaded. 相似文献
2.
Seung Tae Hong Hyung Sang Park Jong Sung Lim Youn-Woo Lee Masakazu Anpo Jae-Duck Kim 《Research on Chemical Intermediates》2006,32(8):737-747
The synthesis of dimethyl carbonate (DMC) from methanol and supercritical carbon dioxide over various base catalysts has been
studied. Compounds of group-I elements (Li, Na and K) were used as base catalysts. The promoter and the dehydrating agent
were also used to enhance the yield of DMC. The effects of the catalysts, promoter and dehydrating agent on the yield of DMC
were investigated. By-products such as dimethyl ether (DME) and C1–C2 hydrocarbons were formed with the DMC as a main product. The yield of DMC with different alkali metal catalysts ranked in
the following order: K > Na > Li. The catalysts of the metal-CO3 compounds were more effective than the metal-OH compounds in DMC synthesis. The maximum DMC yield reached up to about 12
mol% in the presence of K2CO3 (catalyst), CH3I (promoter) and 2,2-dimethoxypropane (dehydrating agent) at 130–140°C and 200 bar. The reaction mechanism of DMC synthesis
from methanol and supercritical carbon dioxide was proposed. 相似文献
3.
Highly effective direct synthesis of DMC from CH_3OH and CO_2 using novel Cu-Ni/C bimetallic composite catalysts 总被引:1,自引:0,他引:1
Novel Cu-Ni/C has been prepared and utilized as an efficient catalyst system in direct synthesis of DMC from CH3OH and CO2. 相似文献
4.
In this work,the protic ionic liquid[DBUH][Im](1,8-diazabicyclo[5.4.0]-7-undeceniumimidazolide)was developed as an efficient catalyst for the transesterification of ethylene carbonate with methanol to produce dimethyl carbonate.At 70℃,up to 97%conversion of ethylene carbonate and 91%yield of dimethyl ca rbonate were obtained with 1 mol%[DBUH][Im](relative to ethylene carbonate)as catalyst in 2 h.Even at room temperature,the conversion of ethylene carbonate can reach 94%and the yield of dimethyl carbonate can approach 81%for 6 h.Catalytic mechanism investigation showed the high catalytic efficiency of this ionic liquid results from the synergistic activation effect,wherein the cation can activate ethylene carbonate and the anion can activate methanol through hydrogen bond formatio n.Although the reusability of the ionic liquid need to be further improved,high efficiency and comme rcial availability of[DBUH][Im]render it a promising catalyst for the preparation of dimethyl carbonate. 相似文献
5.
Critical temperatures and pressures of reacting mixture in synthesis of dimethyl carbonate with methanol and carbon dioxide 总被引:1,自引:0,他引:1
Xing Cui Guo Zhang Feng Qin Guo Fu Wang Jian Guo Wang 《中国化学快报》2008,19(2):249-252
Critical temperatures and pressures of nominal reacting mixture in synthesis of dimethyl carbonate (DMC) from methanol and carbon dioxide (quaternary mixture of carbon dioxide + methanol + water + DMC) were measured using a high-pressure view cell. The results suggested that the critical properties of the reacting mixture depended on the reaction extent as well as its initial composition (initial ratio of carbon dioxide to methanol). Such information is essential for determining the reaction conditions when one intends to carry out the synthesis of DMC with CO2 and methanol under supercritical conditions. 相似文献
6.
Summary A two-step synthesis of dimethyl carbonate (DMC) from ethylene oxide (EO), carbon dioxide and methanol using heterogeneous
anion exchange resins as catalysts is reported. The first step is the reaction of EO with CO2 to form ethylene carbonate (EC), and the second one the transesterification of EC with methanol to yield DMC. Effect of various
reaction parameters on the activity and selectivity of the catalysts used was investigated. After the first step, the crude
mixture containing EC was directly reacted with methanol in the presence of a heterogeneous anion exchange resin catalyst
to produce DMC in high yield and selectivity. Our process is highly economic. 相似文献
7.
Eun-Seon Jeong Kyung-Hoon Kim Dae-Won Park Sang-Wook Park Jae-Wook Lee 《Reaction Kinetics and Catalysis Letters》2005,86(2):241-248
Summary The synthesis of dimethyl carbonate (DMC) was investigated through the transesterification of propylene carbonate (PC) with
methanol using quaternary ammonium salt catalysts. The reaction was carried out in an autoclave at 120-140 oC under carbon
dioxide pressure of 250-400 psig. The main by-product was propylene glycol. The quaternary salts of larger alkyl group and
more nucleophilic counter anion exhibited higher catalytic activity. Kinetic studies were also performed to better understand
the reaction mechanism. Quaternary ammonium chlorides immobilized on polystyrene supports were also tested for their possible
uses as heterogeneous catalysts. 相似文献
8.
Xuan Yun Wang Su Qin Liu Ke Long Huang Qiu Ju Feng De Lai Ye Bing Liu Jin Long Liu Guan Hua Jin 《中国化学快报》2010,21(8):987-980
<正>With high surface area,open porosity and high efficiency,a catalyst was prepared and firstly employed in electrocatalytic reduction of CO_2 and electrosynthesis of dimethyl carbonate(DMC).The electrochemical property for electrocatalytic reduction of CO_2 in ionic liquid was studied by cyclic voltammogram(CV).The effects of various reaction variables like temperature,working potential and cathode materials on the electrocatalytic performance were also investigated.80%yield of DMC was obtained under the optimal reaction conditions. 相似文献
9.
Herein, we report a novel method for the synthesis of cyclic carbonate in water. By tuning the amount of water, cycloaddition of CO2 to epoxide in aqueous medium leads to cyclic carbonates with moderate to excellent yields and high selectivities. In addition, the presence of water could remarkably improve the activity of ionic liquids by which the turnover frequency of the reaction is about 4-5 times higher in the presence than in the absence of water. The relationship between the higher catalytic reactivity and water was proposed. 相似文献
10.
The mechanism of dimethyl carbonate(DMC) formation from CO_2 and methanol is investigated using three well-shaped CeO_2 catalysts, nanorod, nanocube and octahedron, which are packed with different crystal planes. In situ Fourier Transform Infrared Spectroscopy(FTIR) is employed to probe each reaction step in the DMC synthesis. The number of –OH groups and the species of CO_2 adsorptions on ceria surface have significant influence on the activity of ceria with different morphologies. Rod-ceria has favorable catalytic activity because of the large amount of –OH groups and the formation of bidentate carbonate species. 相似文献
11.
Promotion of Ionic Liquid to Dimethyl Carbonate Synthesis from Methanol and Carbcn Dioxide 总被引:2,自引:0,他引:2
Promotion of ionic liquid, 1-ethyl-3-methylimidazolium bromide (emimBr), to the synthesis of dimethyl carbonate (DMC) from methanol and carbon dioxide in the presence of potassium carbonate and less amount of methyl iodide under mild conditions was investigated. The results showed that the high selectivity and raised yield of DMC was achieved due to the addition of emimBr in the reaction system. And effect of several reaction conditions such as temperature, pressure and amount of emimBr was discussed. 相似文献
12.
13.
碳酸二甲酯(DMC)是一种环境友好型绿色化学品,可作为甲基化和羰基化试剂用于取代传统剧毒的硫酸二甲酯和光气.另外,DMC具有良好的溶解性能,可用于高级溶剂;DMC分子中具有高的氧含量,可用作汽油添加剂来提高汽油的辛烷值;DMC还可用作聚碳酸酯的原料.随着人们环保意识的不断增强,DMC的生产和应用呈现出巨大的吸引力和市场潜力.DMC合成方法主要有光气法、甲醇氧化羰化法、尿素醇解法及酯交换法等.酯交换法具有反应条件温和、产率高等优点,是目前工业制备DMC的主要方法.研究发现,相对于酸性催化剂,碱性催化剂更有利于酯交换法合成DMC.金属氧化物催化剂具有活性高、热稳定性高及可连续重复回收利用等优点,因而引起了广泛关注.CaO对于酯交换合成DMC反应具有良好的催化活性,但其稳定性差.因此,通常采用复合金属氧化物来促进CaO的分散,并增加金属间相互作用以防止CaO流失.研究发现,经煅烧后的Mg-Al,Ca-Al和Ca-Mg-Al催化剂对于酯交换反应具有高的活性和稳定性.此外,通过碱性稀土金属(La,Ce和Y)的引入可以修饰催化剂上的碱性位点,从而调变催化剂的碱性.本文合成了一系列以Ca-M-Al(M=Mg,La,Ce,Y)层状双氢氧化物为前驱体的固体碱催化剂,将其用于甲醇与碳酸丙烯酯酯交换合成DMC.通过X射线衍射、热重分析、红外光谱、X射线光电子能谱、电感耦合等离子体、CO2程序升温脱附和Hammett指示剂对催化剂进行了表征.研究发现,各催化剂的活性高低依次为:Ca-Y-Al相似文献
14.
Ying Tang YuYing Xue Zhaoyi Li Tianlan Yan Rui Zhou Zhiping Zhang 《Journal of Saudi Chemical Society》2019,23(4):494-502
In this article, a CaO-based catalyst was prepared by impregnating chloride salts on CaO to develop a highly efficient heterogeneous catalyst for the synthesis of glycerol carbonate (GC) from glycerol and dimethyl carbonate. LiCl/CaO exhibited a high catalytic activity under moderate reaction conditions. The effects of the LiCl loadings, the amount of catalyst and the calcination temperature on the catalytic activity were investigated. The highest yield of 94.19% glycerol carbonate was obtained at 65 °C on CaO loaded with 10% LiCl after 1 h, and the catalyst had high stability in reusing work. Scanning electron microscopy (SEM), X-ray diffraction (XRD), BET, CO2-TPD, XPS and thermalgravity (TG) were used to characterize the prepared catalyst. It was found that the high catalytic activity of CaO after modification with LiCl is associated with the structural aspects and the amount of basicity of the catalyst. The Li2O2 species, which is a strong basic site that is formed by the substitution of the Ca2+ in CaO lattice by Li+, has great activity for transesterification. 相似文献
15.
The effect of potassium(K) promoter on the catalytic performance of activated carbon(AC) supported Wacker-type catalysts(Pd Cl2–Cu Cl2/AC) for the synthesis of dimethyl carbonate(DMC) from CO and methyl nitrite(MN) was investigated by means of N2 adsorption, H2-temperature-programmed reduction(H2-TPR), and X-ray photoelectron spectroscopy(XPS). The experimental results showed that the space time yield of DMC on Wacker-type catalysts with different K promoters ranked in the following order: KCl KOH CH3 COOK K2CO3. Especially, the addition of KCl significantly improved the catalytic activities of Pd Cl2–Cu Cl2/AC catalyst for DMC synthesis from CO and MN. N2 adsorption data indicated that the addition of K promoters did not change the textural properties of Wacker-type catalysts greatly. H2-TPR and XPS results demonstrated that the existence of KCl promoted the reducibility of Cu2+species and increased the proportion of Cu2+species on catalyst surface, which is favorable for oxidizing Pd0 to active Pd2+. Further, the addition of KCl benefited the reactivity of Pd Cl2–Cu Cl2/AC catalyst for DMC synthesis from CO and MN. 相似文献
16.
非金属催化剂在催化环氧化物和CO2合成环状碳酸酯中的研究进展 总被引:2,自引:0,他引:2
随着科学技术的进步和工业化的发展,大量化石燃料被消耗,大气中二氧化碳浓度急剧增加,导致温室效应加剧,严重威胁到人类的生存和发展。基于可持续发展的思想,利用储量丰富且廉价的二氧化碳作为 C1资源替代有毒的气体(如一氧化碳和光气等)制备具有广泛应用的环状碳酸酯,不仅满足“绿色化学”的要求,而且符合“原子经济性”的原则。迄今为止,大量用于催化二氧化碳和环氧化物环加成反应合成环状碳酸酯的催化剂,包括均相催化剂(如金属卤化物、有机碱、离子液体和金属配合物),多相催化剂(如金属氧化物、负载型催化剂、有机聚合物、金属有机框架材料和碳材料等)被报道。其中金属催化剂占主导地位,大多表现出优异的催化活性。然而,目前可供开采的金属矿越来越少,大多数金属的回收再利用率较低,重金属污染日趋严重。因此,开发新型、廉价、绿色、高效、循环性和稳定性好的非金属催化剂具有重要意义。
本文主要介绍了近3年以来用于催化二氧化碳和环氧化物环加成反应合成环状碳酸酯的非金属催化剂,主要包括有机碱、离子液体、固载型催化剂、有机聚合物和碳材料等。概括了不同种类催化剂的设计思想及其催化反应机理,重点阐述了分子内以及分子间各种功能基团的协同作用对环加成反应的影响。通过比较发现,具有“C–N=C”结构的有机碱活性相对较高,氢键给体和亲核物质都能与有机碱协同作用提高其催化活性;传统离子液体的活性一般不理想,氢键给体如羟基和羧基的引入有利于促进环加成反应,且多阳离子和多氢键给体功能化的离子液体表现出更高的催化活性;负载型催化剂中,载体和活性组分之间的协同作用有利于加速环加成反应的进行,多种功能基团负载和以共价键方式多层固载能更好地提高催化剂稳定性和催化活性;利用非烯烃化合物制得的活性组分位于主链的多孔有机聚合物,催化活性和稳定性大多高于活性组分位于侧链的烯烃聚合物;碳材料催化剂中,引入不饱和的 N物种(如伯胺和吡啶氮),有利于 CO2的吸附和活化,能促进环加成反应。此外,利用密度泛函的方法,计算模拟催化反应过程,能更好地揭示反应机理,并为设计和制备高效的催化剂提供理论指导。
该领域目前面临的重要挑战是研发可以同时实现二氧化碳捕获和转化的新型、环保和高效非金属催化剂,终极目标是利用多孔催化材料在常温和常压下直接捕获工业废气中的二氧化碳,并利用捕获的二氧化碳实现环状碳酸酯的连续生产。基于协同催化的设计思想,利用多种基团功能化的策略合成高效吸附和活化二氧化碳以及开环活化环氧化物的非金属催化剂,有望实现上述目标。 相似文献
本文主要介绍了近3年以来用于催化二氧化碳和环氧化物环加成反应合成环状碳酸酯的非金属催化剂,主要包括有机碱、离子液体、固载型催化剂、有机聚合物和碳材料等。概括了不同种类催化剂的设计思想及其催化反应机理,重点阐述了分子内以及分子间各种功能基团的协同作用对环加成反应的影响。通过比较发现,具有“C–N=C”结构的有机碱活性相对较高,氢键给体和亲核物质都能与有机碱协同作用提高其催化活性;传统离子液体的活性一般不理想,氢键给体如羟基和羧基的引入有利于促进环加成反应,且多阳离子和多氢键给体功能化的离子液体表现出更高的催化活性;负载型催化剂中,载体和活性组分之间的协同作用有利于加速环加成反应的进行,多种功能基团负载和以共价键方式多层固载能更好地提高催化剂稳定性和催化活性;利用非烯烃化合物制得的活性组分位于主链的多孔有机聚合物,催化活性和稳定性大多高于活性组分位于侧链的烯烃聚合物;碳材料催化剂中,引入不饱和的 N物种(如伯胺和吡啶氮),有利于 CO2的吸附和活化,能促进环加成反应。此外,利用密度泛函的方法,计算模拟催化反应过程,能更好地揭示反应机理,并为设计和制备高效的催化剂提供理论指导。
该领域目前面临的重要挑战是研发可以同时实现二氧化碳捕获和转化的新型、环保和高效非金属催化剂,终极目标是利用多孔催化材料在常温和常压下直接捕获工业废气中的二氧化碳,并利用捕获的二氧化碳实现环状碳酸酯的连续生产。基于协同催化的设计思想,利用多种基团功能化的策略合成高效吸附和活化二氧化碳以及开环活化环氧化物的非金属催化剂,有望实现上述目标。 相似文献
17.
This paper describes the effect of the in situ hydrolysis of 2-cyanopyridine and its derivatives on the synthesis of dimethyl carbonate (DMC) from CO2 and methanol over CeO2. 2-Cyanopyridine, with the highest electronic charge number of the carbon in the cyanogroup, is the most effective agent to accelerate the desired reaction by a decrease of water. CeO2(110) planes are active for the hydrolysis of 2-cyanopyridine, further enhancing the DMC formation by in situ removal of water effectively. The DMC yield is improved drastically up to 378.5 mmol g cat-1 from 12.8 mmol g cat-1 with the in situ hydrolysis of 2-cyanopyridine over rod-CeO2(110) catalyst. 相似文献
18.
Gholam Reza Moradi Rohollah Ghanei Ferydon Yaripour 《Reaction Kinetics and Catalysis Letters》2007,92(1):137-145
Nine hybrid catalysts have been prepared, characterized and tested in a micro reactor for the direct synthesis of dimethyl
ether. The physical mixtures of H-MFI-90 with ICI or KMT catalysts showed better performance. 相似文献
19.
The reactivity of five di-n-butyltin(IV) complexes, n-Bu2Sn(OR)2 (1), n-Bu2SnO (3), [n-Bu2Sn(OR)]2O (4), (n-Bu2SnO)2(CO2) (6) and (n-Bu2SnO)6[(n-Bu2SnOR)2(CO3)]2 (7) (R = CH3), with CO2, suggested as possible catalyst precursors and key-intermediates for the direct synthesis of dimethyl carbonate from carbon dioxide and methanol, has been investigated using high-pressure 119Sn{1H} NMR (HP-NMR) spectroscopy. Four of the five precursors studied, i.e. 3, 4, 6 and 7 give rise to an identical 119Sn{1H} NMR pattern which can be explicitly attributed to the fingerprint of the dimeric form of the 1-methoxy-3-methylcarbonatotetrabutyldistannoxane {5}2. However, with 1, a new pair of signals is observed in addition to the characteristic 119Sn{1H} NMR resonances of the dimeric hemicarbonato species {2}2 and {5}2, which can be attributed to the in situ formation of an unprecedented species suggested to be the trinuclear carbonato di-n-butyltin(IV) complex, 8. 相似文献