首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The experiments examined age-related changes in temporal sensitivity to increments in the interonset intervals (IOI) of components in tonal sequences. Discrimination was examined using reference sequences consisting of five 50-ms tones separated by silent intervals; tone frequencies were either fixed at 4 kHz or varied within a 2-4-kHz range to produce spectrally complex patterns. The tonal IOIs within the reference sequences were either equal (200 or 600 ms) or varied individually with an average value of 200 or 600 ms to produce temporally complex patterns. The difference limen (DL) for increments of IOI was measured. Comparison sequences featured either equal increments in all tonal IOIs or increments in a single target IOI, with the sequential location of the target changing randomly across trials. Four groups of younger and older adults with and without sensorineural hearing loss participated. Results indicated that DLs for uniform changes of sequence rate were smaller than DLs for single target intervals, with the largest DLs observed for single targets embedded within temporally complex sequences. Older listeners performed more poorly than younger listeners in all conditions, but the largest age-related differences were observed for temporally complex stimulus conditions. No systematic effects of hearing loss were observed.  相似文献   

2.
In recent years, a number of investigators have provided evidence that the auditory cortex has a critical role in both the detection and discrimination of brief sounds. Dogs and humans with lesions of the neocortical auditory centers have been reported to exhibit significantly elevated detection thresholds for signals shorter than 16 ms in duration. In tests of frequency discrimination, the same subjects also exhibited severe deficits whenever tonal signals were less than 20--40 mn in lengths. In the present report, we present evidence brief tones. Operated cats, while exhibiting normal difference limens for 1-kHz tones of 100-ms duration, have significantly elevated limens for discriminating tones of 8- and 2-ms duration. With further testing, the same operated cats can be shown to have normal absolute thresholds for detecting brief tones.  相似文献   

3.
Listeners' abilities to learn to hear all the details of an initially unfamiliar sequence of ten 45-ms tones were studied by tracking detection thresholds for each tonal component over a prolonged period of training. After repeated listening to this sequence, the presence or absence of individual tones could be recognized, even though they were attenuated by 40-50 dB relative to the remainder of the pattern. Threshold-tracking histories suggest that listeners tend to employ two different learning strategies, one of which is considerably more efficient. Special training by reducing stimulus uncertainty and extending the duration of the target component was effective in increasing the rate of threshold improvement. Strategies acquired with the first pattern studied generalized to new sequences of tones. The possible implications of these results for the perceptual learning of speech or other auditory codes are discussed.  相似文献   

4.
Reductions in overshoot following intense sound exposures   总被引:1,自引:0,他引:1  
Overshoot refers to the poorer detectability of brief signals presented soon after the onset of a masking noise compared to those presented after longer delays. In the present experiment, brief tonal signals were presented 2 or 190 ms following the onset of a broadband masker that was 200 ms in duration. These two conditions of signal delay were tested before and after a series of exposures to a tone intense enough to induce temporary threshold shift (TTS). The magnitude of the overshoot was reduced after the exposure when a TTS of at least 10 dB was induced, but not when smaller amounts of TTS were induced. The reduction in overshoot was due to a decrease in the masked thresholds with the 2-ms delay; masked thresholds with the 190-ms delay were not different pre- and post-exposure. The implication is that the mechanisms responsible for the normal overshoot effect are temporarily inactivated by the same stimulus manipulations that produce a mild exposure-induced hearing loss. Thus the result is the paradox that exposure to intense sounds can produce a loss of signal detectability in certain stimulus conditions and a simultaneous improvement in detectability in other stimulus conditions.  相似文献   

5.
A tone usually declines in loudness when preceded by a more intense inducer tone. This phenomenon is called "loudness recalibration" or "induced loudness reduction" (ILR). The present study investigates how ILR depends on level, loudness, and duration. A 2AFC procedure was used to obtain loudness matches between 2500-Hz comparison tones and 500-Hz test tones at 60 and 70 dB SPL, presented with and without preceding 500-Hz inducer tones. For 200-ms test and comparison tones, the amount of ILR did not depend on inducer level (set at 80 dB SPL and above), but ILR was greater with 200- than with 5-ms inducers, even when both were equally loud. For 5-ms tones, ILR was as great with 5- as with 200-ms inducers and about as great as when test and inducer tones both lasted 200 ms. These results suggest that (1) neither the loudness nor the SPL of the inducer alone governs ILR, and (2) inducer duration must equal or exceed test-tone duration to yield maximal amounts of ILR. Further analysis indicates that the efferent system may be partly responsible for ILR of 200-ms test tones, but is unlikely to account for ILR of 5-ms tones.  相似文献   

6.
The purpose of this investigation was to examine two stimulus parameters that were reasoned to be of importance to comodulation masking release (CMR). The first was the degree of fluctuation, or depth of modulation, in the masker bands, and the second was the temporal position of the signal with respect to the modulations of the masker. The investigation began by demonstrating the efficacy of sinusoidally amplitude-modulated (SAM) tonal complex maskers in eliciting CMR. "Nine-band" maskers, 650 ms in duration, were constructed by adding together nine SAM tones spaced at 100-Hz intervals from 300 to 1100 Hz. The rate of modulation for each SAM tone was 10 Hz, and the depth of modulation was 100%. Using such maskers, it was shown that when the on-frequency SAM tone had a modulation depth of 100%, the threshold for a 250-ms, 700-Hz tone improved monotonically as the modulation depths of the flanking SAM tones increased from 0% to 100%. When the on-frequency SAM tone had a modulation depth of 63%, some listeners performed optimally when the flanking SAM tones also exhibited a modulation depth of 63%, whereas others performed best when the flankers had modulation depths of 100%. With regard to signal position, a typical CMR effect was observed when the signal, consisting of a train of three 50-ms, 700-Hz tone bursts, was placed in the dips of the on-frequency masker. However, when the signal was placed at the peaks of the envelope, an increase in masking was observed for a comodulated masker.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Thresholds were measured for the detection of inharmonicity in complex tones. Subjects were required to distinguish a complex tone whose partials were all at exact harmonic frequencies from a similar complex tone with one of the partials slightly mistuned. The mistuning which allowed 71% correct identification in a two-alternative forced-choice task was estimated for each partial in turn. In experiment I the fundamental frequency was either 100, 200, or 400 Hz, and the complex tones contained the first 12 harmonics at equal levels of 60 dB SPL per component. The stimulus duration was 410 ms. For each fundamental the thresholds were roughly constant when expressed in Hz, having a mean value of about 4 Hz (range 2.4-7.3 Hz). In experiment II the fundamental frequency was fixed at 200 Hz, and thresholds for inharmonicity were measured for stimulus durations of 50, 110, 410, and 1610 ms. For harmonics above the fifth the thresholds increased from less than 1 Hz to about 40 Hz as duration was decreased from 1610-50 ms. For the lower harmonics (up to the fourth) threshold changed much less with duration, and for the three shorter durations thresholds for each duration were roughly a constant proportion of the harmonic frequency. The results suggest that inharmonicity is detected in different ways for high and low harmonics. For low harmonics the inharmonic partial appears to "stand out" from the complex tone as a whole. For high harmonics the mistuning is detected as a kind of "beat" or "roughness," presumably reflecting a sensitivity to the changing relative phase of the mistuned harmonic relative to the other harmonics.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Extracellular recordings from the cervical connectives in both long- and short-winged E. carolinus reveal auditory units that are sensitive to frequencies > 15 kHz with best sensitivity at 35 kHz (79 dB SPL threshold). Stimuli in this frequency range also elicit a startle response in long-winged individuals flying on a tether. For single-pulse stimuli, startle and neck connective thresholds decrease with increasing ultrasound duration, consistent with the operation of an exponential integrator with a approximately 32.5-ms time constant. There is evidence for adaptation to long duration pulses (> 20 ms) in the neck connectives, however, as it is more difficult to elicit responses to the later stimuli of a series. For paired-pulse stimuli consisting of 1-ms pulses of 40 kHz, temporal integration was demonstrated for pulse separations < 5 ms. For longer pulse separations, startle thresholds were elevated by 3 dB and appear to be optimally combined. Startle thresholds to 5 ms frequency modulated (FM) sweeps (60-30 kHz) and pure tone pulses (40 kHz) did not differ. The characteristics and sensitivity of this ultrasound-induced startle response did not differ between males and females. As in some other tympanate insects, ultrasound sensitivity in E. carolinus presumably functions in the context of predation from echolocating bats.  相似文献   

9.
The study measured listener sensitivity to increments in the inter-onset intervals (IOIs) of successive 20-ms 4000-Hz tone bursts in isochronous sequences. The stimulus sequences contained two-six tone bursts, separated equally by silent intervals, with tonal IOIs ranging from 25 to 100 ms. Difference limens (DLs) for increments of the tonal IOIs were measured to assess listener sensitivity to changes of sequence rate. Comparative DLs were also measured for increments of a single interval located within six-tone isochronous sequences with different tone rates. Listeners included younger normal-hearing adults and two groups of older adults with and without high-frequency sensorineural hearing loss. The results, expressed as Weber fractions (DL/IOI), revealed that discrimination improved as the sequence tone rate decreased and the number of tonal components increased. Discrimination of a single sequence interval also improved as the number of sequence components increased from two to six but only for brief intervals and fast sequence rates. Discrimination performance of the older listeners with and without hearing loss was equivalent and significantly poorer than that of the younger listeners. The discrimination results are examined and discussed within the context of multiple-look mechanisms and possible age-related differences in the sensory coding of signal onsets.  相似文献   

10.
Detection thresholds for tones in narrow-band noise were measured for two binaural configurations: N(o)S(o) and N(o)S(pi). The 30-Hz noise band had a mean overall level of 65 dB SPL and was centered on 250, 500, or 5000 Hz. Signals and noise were simultaneously gated for 500, 110, or 20 ms. Three conditions of level randomization were tested: (1) no randomization; (2) diotic randomization--the stimulus level (common to both ears) was randomly chosen from an uniformly distributed 40-dB range every presentation interval; and (3) dichotic randomization--the stimulus levels for each ear were each independently and randomly chosen from the 40-dB range. Regardless of binaural configuration, level randomization had small effects on thresholds at 500 and 110 ms, implying that binaural masking-level differences (BMLDs) do not depend on interaural level differences for individual stimuli. For 20-ms stimuli, both diotic and dichotic randomization led to markedly poorer performance than at 500- and 110-ms durations; BMLDs diminished with no randomization and dichotic randomization but not with diotic randomization. The loss of BMLDs at 20 ms, with degrees-of-freedom (2WT) approximately 1, implies that changes in intracranial parameters occurring during the course of the observation interval are necessary for BMLDs when mean-level and mean-intracranial-position cues have been made unhelpful.  相似文献   

11.
The study measured listener sensitivity to increments in the inter-onset interval (IOI) separating pairs of successive 20-ms 4000-Hz tone pulses. A silent interval between the tone pulses was adjusted across conditions to create reference tonal IOI values of 25-600 ms. For each condition, a duration DL for increments of the tonal IOI was measured in listeners comprised of young normal-hearing adults and two groups of older adults with and without high-frequency hearing loss. Discrimination performance of all listeners was poorest for the shorter reference IOIs, and improved to stable levels for longer reference intervals exceeding about 200 ms. Temporal sensitivity of the young listeners was significantly better than that of the elderly listeners in each condition, with the largest age-related differences observed for the shortest reference interval. Age-related differences were also observed for duration DLs measured using single 4000-Hz tone bursts set to three reference durations in the range 50-200 ms. The tone DLs of all listeners were smaller than the corresponding tone-pair IOI DLs, particularly for the shorter reference stimulus durations. There were no significant performance differences observed between the older listeners with and without hearing loss for either discrimination task.  相似文献   

12.
The ability to discriminate between sounds with different spectral shapes was evaluated for normal-hearing and hearing-impaired listeners. Listeners detected a 920-Hz tone added in phase to a single component of a standard consisting of the sum of five tones spaced equally on a logarithmic frequency scale ranging from 200 to 4200 Hz. An overall level randomization of 10 dB was either present or absent. In one subset of conditions, the no-perturbation conditions, the standard stimulus was the sum of equal-amplitude tones. In the perturbation conditions, the amplitudes of the components within a stimulus were randomly altered on every presentation. For both perturbation and no-perturbation conditions, thresholds for the detection of the 920-Hz tone were measured to compare sensitivity to changes in spectral shape between normal-hearing and hearing-impaired listeners. To assess whether hearing-impaired listeners relied on different regions of the spectrum to discriminate between sounds, spectral weights were estimated from the perturbed standards by correlating the listener's responses with the level differences per component across two intervals of a two-alternative forced-choice task. Results showed that hearing-impaired and normal-hearing listeners had similar sensitivity to changes in spectral shape. On average, across-frequency correlation functions also were similar for both groups of listeners, suggesting that as long as all components are audible and well separated in frequency, hearing-impaired listeners can use information across frequency as well as normal-hearing listeners. Analysis of the individual data revealed, however, that normal-hearing listeners may be better able to adopt optimal weighting schemes. This conclusion is only tentative, as differences in internal noise may need to be considered to interpret the results obtained from weighting studies between normal-hearing and hearing-impaired listeners.  相似文献   

13.
Two experiments investigated the temporal integration of trains of tone pulses by normal and by cochlearly impaired listeners. In the first experiment, thresholds were measured for a single 5-ms, 4-kHz tone pulse, and for ten such tone pulses as a function of interpulse interval (delta t). For normal listeners, temporal integration, defined as the threshold difference between one and ten pulses, was about 8 dB for delta t less than 20 ms, and about 5 dB at longer delta t's. For impaired listeners, temporal integration was only about 2-3 dB across the range of delta t's (5-160 ms) studied. A second experiment measured psychometric functions (log d' versus log signal power) for a single pulse and for ten pulses with delta t's of 5 ms and 80 ms. The normal listeners' functions had slopes close to unity in all three conditions, with a few exceptions. The impaired listeners' functions had slopes close to unity for ten pulses with delta t = 5 ms, but had slopes significantly greater than unity for delta t = 80 ms, and for a single pulse. At delta t = 80 ms, the increase in d' relative to the condition with a single tone was similar (a factor of square root of 10) for both impaired and normal listeners, but the threshold difference was smaller for the impaired listeners due to their steeper psychometric functions. For impaired listeners, then, temporal integration at delta t = 80 ms was normal in terms of a change in d' but abnormal when measured as a threshold difference.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Psychophysical forward-masked thresholds were estimated for 3- and 6-month-old infants and for adults. Listeners detected a repeated 1000-Hz probe, with 16-ms rise time, no steady-state duration, and 16-ms fall time. Unmasked thresholds were determined for one group of listeners who were trained to respond when they heard the probe but not at other times. In the masking conditions, each tone burst was preceded by a 100-ms broadband noise masker at 65 dB SPL. Listeners were trained to respond when they heard the probe and masker, but not when they heard the masker alone. The masker-probe interval, delta t, was either 5, 10, 25, or 200 ms. Four groups of subjects listened in the masked conditions, each at one value of delta t. Each listener attempted to complete a block of 32 trials including four probe levels chosen to span the range of expected thresholds. "Group" thresholds, based on average psychometric functions, as well as thresholds for individual listeners, were estimated. Both group and individual thresholds declined with delta t, as expected, for both infants and adults. Infants' masked thresholds were higher than those of adults, and comparison of masked to unmasked thresholds suggested that infants demonstrate more forward masking than adults, particularly at short delta t. Forward masking appeared to have greater effects on 3-month-olds' detection than on either 6-month-olds' or adults'. Compared to adults, 6-month-olds demonstrated more forward masking only for delta t of 5 ms. Thus, susceptibility to forward masking may be nearly mature by 6 months of age.  相似文献   

15.
Complex tonal whistles are frequently produced by some odontocete species. However, no experimental evidence exists regarding the detection of complex tones or the discrimination of harmonic frequencies by a marine mammal. The objectives of this investigation were to examine the ability of a false killer whale to discriminate pure tones from complex tones and to determine the minimum intensity level of a harmonic tone required for the whale to make the discrimination. The study was conducted with a go/no-go modified staircase procedure. The different stimuli were complex tones with a fundamental frequency of 5 kHz with one to five harmonic frequencies. The results from this complex tone discrimination task demonstrated: (1) that the false killer whale was able to discriminate a 5 kHz pure tone from a complex tone with up to five harmonics, and (2) that discrimination thresholds or minimum intensity levels exist for each harmonic combination measured. These results indicate that both frequency level and harmonic content may have contributed to the false killer whale's discrimination of complex tones.  相似文献   

16.
17.
The present study was designed to assess the effects of age on the time course of backward masking. In experiment 1, thresholds for detecting a 10-ms, 500-Hz sinusoidal signal were measured as a function of the temporal separation between the signal and a 50-ms broadband masker. Subjects were younger (18-24) and older (over age 65) adults with normal hearing (thresholds less than 20 dB HL) for frequencies of 4 kHz and below. Younger subjects exhibited less overall masking and steeper recovery functions than did the older adults. Masked thresholds for younger participants approached unmasked thresholds for signal-masker delays greater than 6-8 ms. In contrast, older adults exhibited significant masking even at the longest delay tested (20 ms). In experiment 2, signal duration was decreased to 5 ms for a separate group of younger adults. Although overall thresholds were elevated for the shorter signal duration, the slope of the backward masking recovery function was not different from that observed for younger adults in experiment 1. The results suggest that age, independent of hearing loss, affects the temporal course of backward masking.  相似文献   

18.
When a low harmonic in a harmonic complex tone is mistuned from its harmonic value by a sufficient amount it is heard as a separate tone, standing out from the complex as a whole. This experiment estimated the degree of mistuning required for this phenomenon to occur, for complex tones with 10 or 12 equal-amplitude components (60 dB SPL per component). On each trial the subject was presented with a complex tone which either had all its partials at harmonic frequencies or had one partial mistuned from its harmonic frequency. The subject had to indicate whether he heard a single complex tone with one pitch or a complex tone plus a pure tone which did not "belong" to the complex. An adaptive procedure was used to track the degree of mistuning required to achieve a d' value of 1. Threshold was determined for each ot the first six harmonics of each complex tone. In one set of conditions stimulus duration was held constant at 410 ms, and the fundamental frequency was either 100, 200, or 400 Hz. For most conditions the thresholds fell between 1% and 3% of the harmonic frequency, depending on the subject. However, thresholds tended to be greater for the first two harmonics of the 100-Hz fundamental and, for some subjects, thresholds increased for the fifth and sixth harmonics. In a second set of conditions fundamental frequency was held constant at 200 Hz, and the duration was either 50, 110, 410, or 1610 ms. Thresholds increased by a factor of 3-5 as duration was decreased from 1610 ms to 50 ms. The results are discussed in terms of a hypothetical harmonic sieve and mechanisms for the formation of perceptual streams.  相似文献   

19.
Capacities of the goldfish for intensity discrimination were studied using classical respiratory conditioning and a staircase psychophysical procedure. Physiological studies on single saccular (auditory) nerve fibers under similar stimulus conditions helped characterize the dimensions of neural activity used in intensity discrimination. Incremental intensity difference limens (IDLs in dB) for 160-ms increments in continuous noise, 500-ms noise bursts, and 500-ms, 800-Hz tone bursts are 2 to 3 dB, are independent of overall level, and vary with signal duration according to a power function with a slope averaging - 0.33. Noise decrements are relatively poorly detected and the silent gap detection threshold is about 35 ms. The IDLs for increments and decrements in an 800-Hz continuous tone are about 0.13 dB, are independent of duration, and are level dependent. Unlike mammalian auditory nerve fibers, some goldfish saccular fibers show variation in recovery time to tonal increments and decrements, and adaptation to a zero rate. Unit responses to tone increments and decrements show rate effects generally in accord with previous observations on intracellular epsp's in goldfish saccular fibers. Neurophysiological correlates of psychophysical intensity discrimination data suggest the following: (1) noise gap detection may be based on spike rate increments which follow gap offset; (2) detection of increments and decrements in continuous tones may be determined by steep low-pass filtering in peripheral neural channels which enhance the effects of spectral "splatter" toward the lower frequencies; (3) IDLs for pulsed signals of different duration can be predicted from the slopes of rate-intensity functions and spike rate variability in individual auditory nerve fibers; and (4) at different sound pressure levels, different populations of peripheral fibers provide the information used in intensity discrimination.  相似文献   

20.
Difference limens (DLs) for linear frequency transitions using a 1.0-kHz pulsed-tone standard were obtained from 6- to 9-month-old human infants in a series of three experiments. A repeating standard "yes-no" operant headturning technique and an adaptive staircase (tracking) procedure were used to obtain difference limens from a total of 71 infants. The DLs for 300-ms upward and downward linear frequency sweeps were approximately 3%-4% when the repeating standard was an unmodulated 1.0-kHz pulsed tone of 300-ms duration. These DLs for frequency sweeps were not significantly different from DLs for frequency increments and decrements using 330-ms pulsed tones [J. M. Sinnott and R. N. Aslin, J. Acoust. Soc. Am. 78, 1986-1992 (1985)]. The DLs for frequency sweeps of 50 ms appended to the beginning or the end of a 250-ms unmodulated 1.0-kHz tone were approximately 6%-7%. This greater DL for brief frequency sweeps was confirmed by varying the duration but not the extent of the sweep. Finally, DLs were greater than 50% when the repeating standard was a 50-ms rising or falling frequency sweep appended to the beginning of a 250-ms unmodulated 1.0-kHz tone. These results suggest that rapid frequency transitions are much more difficult to discriminate from frequency transitions of the same category (rising or falling) than from either a frequency transition of the opposite category (falling or rising) or an unmodulated tone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号