首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The processes of third-harmonic and difference-frequency generation through the four-wave mixing of picosecond pulses in gas-filled hollow fibers are experimentally studied. Due to the improvement of phase-matching conditions with an appropriate choice of the gas pressure and optimal parameters of the hollow fiber, we were able to use hollow fibers with a large length (up to 30 cm) for difference-frequency generation, which resulted in a considerable increase in the power of the difference-frequency signal at the output of the fiber. Our experimental data reveal a considerable influence of high-order waveguide modes on four-wave mixing processes in a hollow fiber. It is shown that the waveguide regime of nonlinear optical interactions implemented in hollow fibers removes the limitations on the efficiency of third-harmonic and sum-frequency generation, which are characteristic of the tight-focusing regime in media with normal dispersion and which are due to the geometric phase shift arising in tightly focused light beams.  相似文献   

2.
It is shown that mid-to far-infrared (IR) and terahertz (THz) pulse generation via difference-frequency mixing in quantum well (QW) dual-wavelength heterolasers can be rather efficient under the modelocking regime for one or both lasing fields even at room temperature. In such a device, the long-wavelength field is produced in the process of intracavity difference-frequency mixing of two optical fields: continuous wave (CW) and pulsed (or both pulsed), due to the resonant intersubband quantum coherence in QWs, as well as due to the nonresonant second-order semiconductor bulk nonlinearity. The mode-locking regime of the optical generation allows one to significantly enhance the pulsed driving fields in comparison with those under CW operation and, therefore, substantially increase the output difference-frequency power. Within a simple model, an explicit formula for the intensity and shape of the generated IR or THz pulse is derived. It is shown that this method is capable of producing picosecond pulses at a ∼ 1-GHz repetition rate with a peak power of the order of 1 W and ≲0.2 mW at 10 and 50 μm wavelengths, respectively. Original Text ? Astro, Ltd., 2007.  相似文献   

3.
We report the compression of intense, carrier-envelope phase stable mid-IR pulses down to few-cycle duration using an optical filament. A filament in xenon gas is formed by using self-phase stabilized 330 microJ 55 fs pulses at 2 microm produced via difference-frequency generation in a Ti:sapphire-pumped optical parametric amplifier. The ultrabroadband 2 microm carrier-wavelength output is self-compressed below 3 optical cycles and has a 270 microJ pulse energy. The self-locked phase offset of the 2 microm difference-frequency field is preserved after filamentation. This is to our knowledge the first experimental realization of pulse compression in optical filaments at mid-IR wavelengths (lambda>0.8 microm).  相似文献   

4.
In this paper, a continuously tunable terahertz (THz) source is obtained using a compact intracavity pumped dual-wavelength optical parametric oscillation operating around 2.1 μm as difference-frequency generation pump source. The tuning range of the THz-wave frequency covers from 0.147 THz to 3.651 THz. Based on the collinear difference-frequency generation in the GaSe crystal, the experiment result shows that our schematic is a good option to construct a compact and portable terahertz source with widely tunable range.  相似文献   

5.
Third-harmonic, difference-frequency, and sum-frequency generation processes in hollow fibers are experimentally studied with 30-ps pulses having an energy of several millijoules. The experimental dependence of the difference-frequency signal on the pressure of the gas filling the fiber agrees well with the results of calculations when the contribution of higher order waveguide modes is taken into consideration, thus indicating the importance of nonlinear-optical processes involving higher order waveguide modes of a hollow fiber. Hollow fibers are also shown to expand the possibilities of nonlinear-optical analysis of gases by allowing the generation of third-harmonic and sum-frequency signals, which vanish in the regime of tight focusing in a medium with normal dispersion. Received: 26 September 2000 / Revised version: 15 January 2001 / Published online: 30 March 2001  相似文献   

6.
Golubovic B  Reed MK 《Optics letters》1998,23(22):1760-1762
We report the operation of an all-solid-state system for the generation of tunable mid-infrared sub-50-fs pulses. A Ti:sapphire regenerative amplifier, pumped by 10 W of power from 532-nm, diode-pumped, frequency-doubled Nd:YVO(4) lasers, produced 4-muJ energy, sub-50-fs pulses at 800 nm with a 100-kHz repetition rate. This output was used to drive a beta-BaB(2)O(4) optical parametric amplifier followed by a difference-frequency generator based on a AgGaS(2) crystal. Continuous tuning of ultrafast pulses from 2.4m to longer than 12mum was obtained. A performance comparison of difference-frequency generation in type I and type II phase-matched AgGaS(2) is reported.  相似文献   

7.
We report a transportable mid-infrared laser cavity leak-out spectrometer for online detection of trace gases. The laser spectrometer is based on continuous-wave difference-frequency generation in the wavelength region around 3 μm. Sensitive spectroscopic trace gas monitoring was achieved using a high-finesse ring-down cavity. For difference-frequency generation, we use a periodically poled lithium niobate (PPLN) crystal, pumped by a Nd:YAG laser (signal wave) and a diode laser (pump wave) with a tapered amplifier. A maximum power of 280 μW near λ=3.3 μm is achieved using a pump power of 180 mW at 807 nm, a signal power of 890 mW at 1064.46 nm, and a 50-mm-long PPLN crystal. The resulting system proved to be a unique tool with high sensitivity and specificity for rapid and precise breath testing. We demonstrate spectroscopic online monitoring of ethane traces in exhaled human breath with a precision of 270 parts per trillion (1σ) and a time resolution of 1 s. PACS 42.62.Be; 42.60.-v; 07.57.Ty  相似文献   

8.
Analytical expressions of the spectral functions have been derived for a number of induced excitations that occur near the difference-frequency generation in a four-level atomic system interacting with three laser fields. The spectral heights and subnatural line widths of the induced peaks depend on the intensities of the laser fields involved. The maximum heights of the induced peaks take positive, zero and negative values, indicating that the processes of absorption (attenuation), dark resonance and stimulated emission (amplification) are likely to occur near the difference-frequency generation, respectively. Received: 15 March 2002 / Revised version: 17 June 2002 / Published online: 8 January 2003 RID="*" ID="*"Corresponding author. Fax: +1-613-954-5242  相似文献   

9.
We investigate bandwidth enhancement and response flattening of wavelength conversion based on cascaded sum-frequency generation and difference-frequency generation (SFG/DFG) in quasi-phase-matched periodically poled lithium niobate waveguides by use of two pump lights. Analysis shows that the conversion properties deeply depend on the pump settings. The bandwidth is efficiently enhanced by augmenting the pump wavelength difference. The critical bandwidth corresponding to the response fluctuation of 1 dB in a 3-cm-long waveguide reaches 80-90 nm, which is enough to cover the entire conventional-band and long-wavelength-band. The cascaded SFG/DFG bandwidth is about 24% broader than that of the cascaded second-harmonic generation and difference-frequency generation-based configuration with the same waveguide length. However, the response fluctuation is also enhanced together with the bandwidth enhancement. The method of pump detuning is presented to flatten the response fluctuation. The fluctuation is reduced by more than 1 dB and it can be further reduced by increasing the pump detuning value with a little efficiency penalty.  相似文献   

10.
We report the difference-frequency generation (DFG) of ultrafast mid-infrared laser radiation around 3???m between two picosecond laser pulses with the center wavelengths of 800?nm and 1064?nm in a MgO:PPLN crystal at room temperature. The two laser pulses were generated from the actively synchronized picoseconds Ti:sapphire and Nd:YVO4 oscillators. We measured the DFG wavelengths tunable from 3.19?C3.29???m and the output power is potential to be several mW. This experiment proves a possible roadmap for ultrafast mid- and far-infrared laser radiation generation and even for the THz radiation.  相似文献   

11.
We propose and simulate simple realizations of all-optical format conversion between differential phase-shift keying (DPSK) signals based on cascaded second-order nonlinearities in a periodically poled lithium niobate (PPLN) waveguide. Four kinds of 40 Gb/s all-optical format conversion from non-return-to-zero differential phase-shift keying (NRZ-DPSK) to return-to-zero differential phase-shift keying (RZ-DPSK) are investigated based on cascaded second-harmonic generation and difference-frequency generation (cSHG/DFG) or cascaded sum- and difference-frequency generation (cSFG/DFG). The optical spectra, temporal waveforms, eye diagrams, constellation diagrams, and time-related phase distribution are analyzed, which indicate successful implementation of NRZ-DPSK-to-RZ-DPSK format conversion. The obtained results also confirm the phase preservation characteristic of PPLN.  相似文献   

12.
3 volume multi-pass absorption cell with an 18-m path length. The methane mixing ratio was determined by comparing the direct optical absorption measured in the sample with that measured in a reference gas at 100 torr and room temperature. Relative accuracy of better than 1 ppb (parts in 109, by mole fraction) was achieved in measurements of natural air that contained 1700–1900 ppb methane. The typical measurement time for each sample was 60 seconds. The accuracy was limited by residual interference fringes in the multi-pass cell that resulted from scattering. Without the use of reference samples, the relative accuracy was 20 ppb; it was limited by the long-term reproducibility of the spectroscopic baseline, which was affected by drift in the optical alignment coupled to changes in the ambient temperature. This work demonstrates the use of diode-pumped difference-frequency generation (DFG) in PPLN in a high-precision infrared spectrometer. Compact, room-temperature solid-state gas sensors can be built based on this technology, for accurate real-time measurements of trace gases in the 3–5 μm spectroscopic region. Received: 2 October 1996  相似文献   

13.
Fuji T  Suzuki T 《Optics letters》2007,32(22):3330-3332
Generation of sub-two-cycle, microjoule pulses in the mid-infrared region is demonstrated. Fundamental and second-harmonic pulses of 25 fs Ti:sapphire amplifier output were focused into the air to produce extremely broadband mid-infrared pulses by four-wave difference-frequency generation through the filamentation. The full width at half-maximum of the spectral bandwidth reaches one octave (2.5-5.5 microm), which is sufficiently broad for sub-single-cycle pulse generation. The pulse width was estimated to be 13 fs, without any compressors, by cross-correlation frequency resolved optical gating. The output energy of more than a few microjoule is sufficient for spectroscopy.  相似文献   

14.
An all-diode-laser-based spectrometer is used for the simultaneous detection of methane, oxygen and water vapour. This is accomplished using a 760-nm diode laser and a 980-nm diode laser in conjunction with difference-frequency generation to 3.4 μm in a periodically poled lithium niobate crystal. Each of the output wavelengths is resonant with one of the molecular species. Simultaneous recordings over a 15-m open path of laboratory air are demonstrated. The recording scheme shows the wide applicability of a diode-laser-based difference-frequency spectrometer for the detection of molecular species in different wavelength ranges. By increasing the frequency of the 760-nm diode laser and decreasing the frequency of the 980-nm diode laser, a maximum continuous tuning range in the mid infrared of 3.6 cm-1 is achieved. This enables the recording of several methane lines at atmospheric pressure. Pressure-dependence studies of methane lineshapes are also performed in an absorption cell. An indoor-air methane background level of 3 ppm is measured. The signal-to-noise ratio in the recorded methane spectra indicates that sub-ppm detection of methane at atmospheric pressure is feasible. Received: 6 March 2000 / Revised version: 19 June 2000 / Published online: 11 October 2000  相似文献   

15.
A short-pulse, two-color Yb:fiber laser system has been developed for mid-infrared generation. To date, 20 microW of average power at a wavelength of approximately 18 microm is generated by difference-frequency mixing 300 mW average power from the two-color Yb:fiber amplifier. The mid-infrared power was not limited by two-photon absorption, allowing it to be scaled by increasing the amplifier power.  相似文献   

16.
Specific features of difference-frequency generation of terahertz radiation in the regime of parametric microwave generation in a nonlinear crystal are investigated. It is suggested to use a periodic stripe structure formed in the crystal to achieve phase matching. The dynamics of the wave at difference frequency, which falls into terahertz or far-IR spectral region, is determined based on solution of the set of parametric interaction equations taking into consideration quadratic and cubic nonlinearities.  相似文献   

17.
We have developed a diode-pumped passively mode-locked Nd3+:CLTGG laser operated at 1059 and 1061 nm with a semiconductor saturable absorber mirror (SESAM). The relative intensity of the two spectrum wavelengths is adjustable, allowing asynchronous and synchronous generation of the dual-wavelength pulses. In synchronous mode-locking regime, a total average output power of 383 mW was obtained with pulse duration of 3.5 ps and repetition rate of 42 MHz. The two spectral bands of 1059 and 1061 nm had the same intensities and areas, indicating 1:1 for the pulse energy ratio. It is desirable for efficiently generating a terahertz wave by difference-frequency generation.  相似文献   

18.
A conversion efficiency as high as 22%from dye-laser radiation to the near infrared with difference-frequency mixing of Nd:YAG laser radiation and its second-harmonic-pumped dye laser in an only 5 mm long KTP crystal is reported for the generation of tunable near infrared radiation.  相似文献   

19.
A cw mid-IR coherent source based on difference-frequency generation is designed and characterized. For mid-IR generation, a periodically poled MgO:LiNbO(3) crystal is placed inside a compact Ti:sapphire laser cavity. This provides high-power pump radiation for the nonlinear process. Optical injection by an external-cavity diode laser ensures single-frequency operation of the Ti:sapphire laser, while signal radiation is provided by a fiber-amplified Nd:YAG laser. Mid-IR radiation can be generated with 3850-4540 nm tuning range, narrow linewidth, Cs-standard traceability, and TEM(00) spatial mode. 30 mW power is obtained at 4510 nm.  相似文献   

20.
We report difference-frequency generation (DFG) in periodically poled lithium niobate (PPLN) around 4.25 μm using a cw Nd:YAG and an injection-locked diode laser. This system provides a narrow linewidth source at 4.25 μm with near-shot-noise-limited operation. A conversion efficiency close to the theoretical limit is obtained. Detection of CO2 absorption spectra is demonstrated and further improvements and applications to high sensitivity spectroscopy are discussed. Received: 12 August 1999 / Revised version: 21 January 2000 / Published online: 24 March 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号