首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 883 毫秒
1.
HW-MWECR-CVD法制备氢化微晶硅薄膜及其微结构研究   总被引:5,自引:0,他引:5       下载免费PDF全文
刘国汉  丁毅  朱秀红  陈光华  贺德衍 《物理学报》2006,55(11):6147-6151
用热丝辅助微波电子回旋共振化学气相沉积方法制备出高晶化体积分数的氢化微晶硅(μc-Si:H)薄膜.拉曼散射和X射线衍射技术对样品的微观结构测量分析表明,当反应气体中SiH4浓度在3.6%—50%之间大范围变化时,μc-Si:H薄膜均具有高的晶化体积分数.进一步的分析表明,在SiH4浓度较大时制备的薄膜,其结构以非晶-微晶的过渡相为主.薄膜易于晶化或生长为过渡相的主要原因是微波电子回旋共振使SiH4气体高度分解,等离子体高度电离. 关键词: 微波电子回旋共振化学气相沉积 氢化微晶硅薄膜 拉曼散射 X射线衍射  相似文献   

2.
雷青松  吴志猛  耿新华  赵颖  奚建平 《中国物理》2005,14(11):2342-2347
Hydrogenated microcrystalline and amorphous silicon thin films were prepared by very high frequency plasmaenhanced chemical vapour deposition (VHF PECVD) by using a mixture of silane and hydrogen as source gas. The influence of deposition parameters on the transition region of hydrogenated silicon films growth was investigated by varying the silane concentration (SC), plasma power (Pw), working pressure (P), and substrate temperature (Ts). Results suggest that SC and Ts are the most critical factors that affect the film structure transition from microcrystalline to amorphous phase. A narrow region in the range of SC and Ts, in which the rapid phase transition takes place, was identified. It was found that at lower P or higher Pw, the transition region is shifted to larger SC. In addition, the dark conductivity and photoconductivity decrease with SC and show sharp changes in the transition region. It proposed that the transition process and the transition region are determined by the competition between the etching effect of atomic hydrogen and the growth of amorphous phase.  相似文献   

3.
侯国付  耿新华  张晓丹  孙建  张建军  赵颖 《中国物理 B》2011,20(7):77802-077802
A series of hydrogenated silicon thin films with varying silane concentrations have been deposited by using very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD) method. The deposition process and the silicon thin films are studied by using optical emission spectroscopy (OES) and Fourier transfer infrared (FTIR) spectroscopy, respectively. The results show that when the silane concentration changes from 10% to 1%, the peak frequency of the Si—H stretching mode shifts from 2000 cm - 1 to 2100 cm - 1, while the peak frequency of the Si—H wagging—rocking mode shifts from 650 cm - 1 to 620 cm - 1. At the same time the SiH*/Hα intensity ratio in the plasma decreases gradually. The evolution of the infrared spectra and the optical emission spectra demonstrates a morphological phase transition from amorphous silicon (a-Si:H) to microcrystalline silicon (μc-Si:H). The structural evolution and the μc-Si:H formation have been analyzed based on the variation of Hα and SiH* intensities in the plasma. The role of oxygen impurity during the plasma process and in the silicon films is also discussed in this study.  相似文献   

4.
采用等离子体增强化学气相沉积(PECVD)技术制备了一系列不同氢稀释率下的硅薄膜,采用拉曼散射光谱和傅里叶红外光谱技术研究了非晶/微晶相变区硅薄膜的微观结构变化,将次晶结构(paracrystalline structure)引入到非晶/微晶相变区硅薄膜结构中,提出了次晶粒体积分数(fp),用来表征硅薄膜中程有序程度。结果表明,氢稀释率的提高导致硅薄膜经历了从非晶硅到微晶硅的相变过程,在相变区靠近非晶相的一侧,硅薄膜表现出氢含量高、结构致密和中程有序度高等特性,氢在薄膜的生长中主要起到表面钝化作用。在相变区靠近微晶相的一侧,硅薄膜具有氢含量低、晶化率高和界面体积分数小等特性,揭示了氢的刻蚀作用主控了薄膜生长过程。采用扫描电子显微镜对样品薄膜的表面形貌进行分析,验证了拉曼散射光谱和傅里叶红外光谱的分析结果。非晶/微晶相变区尤其是相变区边缘硅薄膜结构特性优良,在太阳能电池应用中适合用作硅基薄膜电池本征层。  相似文献   

5.
微晶硅薄膜的结构及光学性质的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
借助RF-PECVD辅助RTP技术,采用高沉积气压的技术路线制备了优质的微晶硅薄膜,并利用拉曼光谱、反射谱和透射谱分别研究了微晶硅的晶化率和光学性质.实验中发现微晶硅的吸收边出现了相对红移,此相对红移可归结于薄膜晶化率的提高和带尾态密度的降低. 关键词: 微晶硅 拉曼光谱 快速热处理 红移  相似文献   

6.
In this paper intrinsic microcrystalline silicon films have been prepared by very high frequency plasma enhanced chemical vapour deposition (VHF-PECVD) with different substrate temperature and pressure. The film properties were investigated by using Raman spectra, x-ray diffraction, scanning electron microscope (SEM), and optical transmittance measurements, as well as dark conductivity. Raman results indicate that increase of substrate temperature improves the microcrystallinity of the film. The crystallinity is improved when the pressure increases from 50Pa to 80Pa and the structure transits from microcrystalline to amorphous silicon for pressure higher than 80Pa. SEM reveals the effect of substrate temperature and pressure on surface morphology.  相似文献   

7.
吴志猛  雷青松  耿新华  赵颖  孙建  奚建平 《中国物理》2006,15(11):2713-2717
This paper reports that the optical emission spectroscopy (OES) is used to monitor the plasma during the deposition process of hydrogenated microcrystalline silicon films in a very high frequency plasma enhanced chemical vapour deposition system. The OES intensities (SiH\sj{*}, H微晶硅 VHF-PECVD 发射光谱学 薄膜物理学microcrystalline silicon, VHF-PECVD, optical emission spectroscopy2005-11-092005-11-092005-12-12This paper reports that the optical emission spectroscopy (OES) is used to monitor the plasma during the deposition process of hydrogenated microcrystalline silicon films in a very high frequency plasma enhanced chemical vapour deposition system. The OES intensities (Sill^*, H^* and H^*β) are investigated by varying the deposition parameters. The result shows that the discharge power, silane concentrations and substrate temperature affect the OES intensities. When the discharge power at silane concentration of 4% increases, the OES intensities increase first and then are constant, the intensities increase with the discharge power monotonously at silane concentration of 6%. The SiH^* intensity increases with silane concentration, while the intensities of H^*α and H^*β increase first and then decrease. When the substrate temperature increases, the SiH^* intensity decreases and the intensities of H^*α and H^*β are constant. The correlation between the intensity ratio of IH^*α/ISiH^* and the crystalline volume fraction (Xc) of films is confirmed.  相似文献   

8.
氢化硅薄膜的晶化机理研究   总被引:2,自引:0,他引:2       下载免费PDF全文
采用PECVD工艺制备了非晶,微晶和多形硅薄膜,研究了电极间热梯度对氢化硅薄膜结构的影响.根据拉曼光谱得到了微晶硅的晶化率,并在椭偏仪中用BEMA模型验证了其准确性.根据理论模型研究了热梯度对微晶和多形硅薄膜沉积机理的影响.研究薄膜厚度对晶化率的影响表明微晶薄膜底端和表面之间存在晶化梯度,而多形硅薄膜中无晶化梯度存在.采用Tauc-Lorentz模型拟合得到薄膜的结构参数表明非晶硅薄膜的致密度和有序度低,而多形硅和微晶硅薄膜的有序度、致密度相近,且明显高于非晶硅. 关键词: 氢化硅 晶化 热梯度 结构  相似文献   

9.
Silicon rich silicon oxide films have been deposited by plasma enhanced chemical vapour deposition using a gas mixture of silane, carbon-di-oxide and hydrogen. Silicon nanocrystals formations in the as deposited silicon rich silicon oxide films have been detected by high resolution transmission electron microscopy, scanning electron microscopy, Raman scattering and X-ray diffraction studies. Structural changes under different deposition condition have been studied by Fourier transform infrared spectroscopy. The oxygen and hydrogen bonding configurations have been obtained from Fourier transform infrared spectroscopy. Room temperature photoluminescence spectra have been observed for the as deposited films. The structural properties together with photoluminescence spectra allowed us to gain insight about the Si nanocrystal formation.  相似文献   

10.
高压PECVD技术沉积硅基薄膜过程中硅烷状态的研究   总被引:4,自引:0,他引:4       下载免费PDF全文
采用高压射频等离子体增强化学气相沉积(RF-PECVD)方法在不同功率下制备了一系列硅薄膜材料,研究了材料晶化率和生长速度随功率变化的规律, 进而研究PECVD方法沉积硅薄膜过程中的硅烷反应状态,并提出可以根据硅烷耗尽程度的不同将硅烷反应状态分为未耗尽、耗尽和过耗尽三种.然后,对不同硅烷反应状态下的材料结构、光电性能以及相应的电池进行了研究,并指出适合于太阳电池本征层的高质量微晶硅材料应该沉积在硅烷耗尽状态. 关键词: 耗尽状态 微晶硅 光发射谱  相似文献   

11.
We report results obtained from measurements of optical transmittance spectra carried out on a series of silicon thin films deposited by plasma-enhanced chemical vapour deposition (PECVD) from silane diluted with hydrogen. Hydrogen dilution of silane results in an inhomogeneous growth during which the material evolves from amorphous hydrogenated silicon (a-Si:H) to microcrystalline hydrogenated silicon (μc-Si:H). Spectral refractive indices and absorption coefficients were determined from transmittance spectra. The spectral absorption coefficients were used to determine the Tauc optical band gap energy, the B factor of the Tauc plots, E 04 (energy at which the absorption coefficient is equal to 104 cm−1), and the Urbach energy as a function of the hydrogen dilution. The results were correlated with microstructure, namely volume fractions of the amorphous and crystalline phase with voids, and with the grain size.   相似文献   

12.
高艳涛  张晓丹  赵颖  孙健  朱峰  魏长春  陈飞 《中国物理》2006,15(5):1110-1113
Hydrogenated microcrystalline silicon (\mu c-Si:H) films are fabricated by very high frequency plasma enhanced chemical vapour deposition (VHF-PECVD) at a silane concentration of 7% and a varying total gas flow rate (Hk2+SiHk4). Relations between the total gas flow rate and the electrical and structural properties as well as deposition rate of the films are studied. The results indicate that with the total gas flow rate increasing the photosensitivity and deposition rate increase, but the crystalline volume fraction (Xkc) and dark conductivity decrease. And the intensity of (220) peak first increases then decreases with the increase of the total gas flow rate. The cause for the changes in the structure and deposition rate of the films with the total gas flow rate is investigated using optical emission spectroscopy (OES).  相似文献   

13.
The effect of deposition temperature on the structural and optical properties of amorphous hydrogenated silicon (a-Si:H) thin films deposited by plasma-enhanced chemical vapour deposition (PECVD) from silane diluted with hydrogen was under study. The series of thin films deposited at the deposition temperatures of 50–200°C were inspected by XRD, Raman spectroscopy and UV Vis spectrophotometry. All samples were found to be amorphous with no presence of the crystalline phase. Ordered silicon hydride regions were proved by XRD. Raman measurement analysis substantiated the results received from XRD showing that with increasing deposition temperature silicon-silicon bond-angle fluctuation decreases. The optical characterization based on transmittance spectra in the visible region presented that the refractive index exhibits upward trend with increasing deposition temperature, which can be caused by the densification of the amorphous network. We found out that the scale factor of the Tauc plot increases with the deposition temperature. This behaviour can be attributed to the increasing ordering of silicon hydride regions. The Tauc band gap energy, the iso-absorption value their difference were not particularly influenced by the deposition temperature. Improvements of the microstructure of the Si amorphous network have been deduced from the analysis.  相似文献   

14.
We report results obtained from FTIR and TEM measurements carried out on silicon thin films deposited by plasma-enhanced chemical vapor deposition (PECVD) from silane diluted with hydrogen. The hydrogen content, the microstructure factor, the mass density and the volume per Si-H vibrating dipoles were determined as a function of the hydrogen dilution. Hydrogen dilution of silane results in an inhomogeneous growth during which the material evolves from amorphous hydrogenated silicon (a-Si:H) to microcrystalline hydrogenated silicon (μc-Si:H). With increasing dilution the transition from amorphous to microcrystalline phase appears faster and the average mass density of the films decreases. The μc-Si:H films are mixed-phase void-rich materials with changing triphasic volume fractions of crystalline and amorphous phases and voids. Different bonding configurations of vibrating Si-H dipoles were observed in the a-Si:H and μc-Si:H. The bonding of hydrogen to silicon in the void- and vacancy-dominated mechanisms of network formation is discussed.  相似文献   

15.
This paper reports that the intrinsic microcrystalline silicon ($\mu $c-Si:H) films are prepared with plasma enhanced chemical vapour deposition from silane/hydrogen mixtures at 200\du\ with the aim to increase the deposition rate. An increase of the deposition rate to 0.88\,nm/s is obtained by using a plasma excitation frequency of 75\,MHz. This increase is obtained by the combination of a higher deposition pressure, an increased silane concentration, and higher discharge powers. In addition, the transient behaviour, which can decrease the film crystallinity, could be prevented by filling the background gas with Hchemical vapour deposition, plasma deposition, solar cells, crystallinityProgram supported by the State Key Development Program for Basic Research of China (Grant No 2006CB202601), and Basic Research Project of Henan Province in China (Grant No 072300410140).7280N, 7830G, 8115HThis paper reports that the intrinsic microcrystalline silicon ($\mu $c-Si:H) films are prepared with plasma enhanced chemical vapour deposition from silane/hydrogen mixtures at 200\du\ with the aim to increase the deposition rate. An increase of the deposition rate to 0.88\,nm/s is obtained by using a plasma excitation frequency of 75\,MHz. This increase is obtained by the combination of a higher deposition pressure, an increased silane concentration, and higher discharge powers. In addition, the transient behaviour, which can decrease the film crystallinity, could be prevented by filling the background gas with Hchemical vapour deposition, plasma deposition, solar cells, crystallinityProgram supported by the State Key Development Program for Basic Research of China (Grant No 2006CB202601), and Basic Research Project of Henan Province in China (Grant No 072300410140).7280N, 7830G, 8115HThis paper reports that the intrinsic microcrystalline silicon ($\mu $c-Si:H) films are prepared with plasma enhanced chemical vapour deposition from silane/hydrogen mixtures at 200\du\ with the aim to increase the deposition rate. An increase of the deposition rate to 0.88\,nm/s is obtained by using a plasma excitation frequency of 75\,MHz. This increase is obtained by the combination of a higher deposition pressure, an increased silane concentration, and higher discharge powers. In addition, the transient behaviour, which can decrease the film crystallinity, could be prevented by filling the background gas with Hchemical vapour deposition, plasma deposition, solar cells, crystallinityProgram supported by the State Key Development Program for Basic Research of China (Grant No 2006CB202601), and Basic Research Project of Henan Province in China (Grant No 072300410140).7280N, 7830G, 8115HThis paper reports that the intrinsic microcrystalline silicon ($\mu $c-Si:H) films are prepared with plasma enhanced chemical vapour deposition from silane/hydrogen mixtures at 200\du\ with the aim to increase the deposition rate. An increase of the deposition rate to 0.88\,nm/s is obtained by using a plasma excitation frequency of 75\,MHz. This increase is obtained by the combination of a higher deposition pressure, an increased silane concentration, and higher discharge powers. In addition, the transient behaviour, which can decrease the film crystallinity, could be prevented by filling the background gas with Hchemical vapour deposition, plasma deposition, solar cells, crystallinityProgram supported by the State Key Development Program for Basic Research of China (Grant No 2006CB202601), and Basic Research Project of Henan Province in China (Grant No 072300410140).7280N, 7830G, 8115HThis paper reports that the intrinsic microcrystalline silicon ($\mu $c-Si:H) films are prepared with plasma enhanced chemical vapour deposition from silane/hydrogen mixtures at 200\du\ with the aim to increase the deposition rate. An increase of the deposition rate to 0.88\,nm/s is obtained by using a plasma excitation frequency of 75\,MHz. This increase is obtained by the combination of a higher deposition pressure, an increased silane concentration, and higher discharge powers. In addition, the transient behaviour, which can decrease the film crystallinity, could be prevented by filling the background gas with H$_{2}$ prior to plasma ignition, and selecting proper discharging time after silane flow injection. Material prepared under these conditions at a deposition rate of 0.78\,nm/s maintains higher crystallinity and fine electronic properties. By H-plasma treatment before i-layer deposition, single junction $\mu $c-Si:H solar cells with 5.5{\%} efficiency are fabricated.  相似文献   

16.
宋捷  郭艳青  王祥  丁宏林  黄锐 《物理学报》2010,59(10):7378-7382
利用等离子体增强化学气相沉积技术,在高氢稀释条件下,研究不同激发频率对纳米晶硅薄膜生长特性的影响.剖面透射电子显微镜(TEM)分析结果显示,不同激发频率下制备的纳米晶硅薄膜晶化区均呈锥状结构生长,但13.56 MHz激发频率下制备的纳米晶硅薄膜最初生长阶段存在非晶态孵化层,即纳米晶硅薄膜的形成经历了由非晶态孵化层到晶态结构层的转变.而高激发频率(40.68 MHz)下硅纳米晶则能直接在非晶态衬底上生长形成.Raman谱和红外吸收谱测量结果表明高激发频率(40.68 MHz)下制备的纳米晶硅薄膜不但具有较高  相似文献   

17.
Thick silicon films were deposited by plasma-enhanced chemical vapor deposition at different plasma power densities. Annealing treatment was performed on these deposited films. As-deposited and annealed films were characterized by X-ray diffraction, Raman scattering spectroscopy and reflectance spectroscopy. Before annealing, only the film deposited at the plasma power density of 500 mW/cm2 exhibits a diffraction peak corresponding to the (111) plane orientation. Raman spectrum of this film confirms the presence of crystalline phase. After annealing, a transition from amorphous phase to crystalline one occurs for all samples. This transition is accompanied by an increase of the crystalline fraction volume deduced from Raman spectra analysis and by a reduction of optical gap energy.  相似文献   

18.
This paper studies the effects of silane back diffusion in the initial plasma ignition stage on the properties of microcrystalline silicon ($\mu $c-Si:H) films by Raman spectroscopy and spectroscopic ellipsometry, through delaying the injection of SiH7280N, 7830G, 8115Hhttp://cpb.iphy.ac.cn/CN/10.1088/1674-1056/19/5/057205https://cpb.iphy.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=111771back diffusion, microcrystalline silicon, thin film, Raman crystallinityProject supported by the State Key Development Program for Basic Research of China (Grant No.~2006CB202601).This paper studies the effects of silane back diffusion in the initial plasma ignition stage on the properties of microcrystalline silicon ($\mu $c-Si:H) films by Raman spectroscopy and spectroscopic ellipsometry, through delaying the injection of SiH$_{4}$ gas to the reactor before plasma ignition. By comparing with standard discharge condition, delayed SiH$_{4}$ gas condition could prevent the back diffusion of SiH$_{4}$ from the reactor to the deposition region effectively, which induced the formation of a thick amorphous incubation layer in the interface between bulk film and glass substrate. Applying this method, it obtains the improvement of spectral response in the middle and long wavelength region by combining this method with solar cell fabrication. Finally, results are explained by modifying zero-order analytical model, and a good agreement is found between model and experiments concerning the optimum delayed injection time.back;diffusion;microcrystalline;silicon;thin;film;Raman;crystallinityThis paper studies the effects of silane back diffusion in the initial plasma ignition stage on the properties of microcrystalline silicon(μc-Si:H) films by Raman spectroscopy and spectroscopic ellipsometry,through delaying the injection of SiH4 gas to the reactor before plasma ignition.Compared with standard discharge condition,delayed SiH4 gas condition could prevent the back diffusion of SiH4 from the reactor to the deposition region effectively,which induced the formation of a thick amorphous incubation layer in the interface between bulk film and glass substrate.Applying this method,it obtains the improvement of spectral response in the middle and long wavelength region by combining this method with solar cell fabrication.Finally,results are explained by modifying zero-order analytical model,and a good agreement is found between the model and experiments concerning the optimum delayed injection time.  相似文献   

19.
Several series of Si:H films were fabricated by the very high frequency plasma enhanced chemical vapour deposition (VHF-PECVD) at different substrate temperatures (T_s) and silane concentration (SC=[SiH_4]/[SiH_4+H_2]%). The results of Raman spectroscopy showed structural evolution of the Si:H films with the variation of T_s and SC. The results of x-ray diffraction (XRD) measurements indicated that T_s also influences the crystal orientation of the Si:H films. The modulation effect of T_s on crystalline volume fraction (X_c) is more evident for the high SC, which shows different trend compared to low SC. In addition, the growth rate of the films also showed a regular change with the variation of SC and T_s. Different samples in the series showed a similar increase in dark conductivity and a decrease in photosensitivity with increasing T_s and decreasing SC. Device-quality microcrystalline silicon materials were deposited at a high growth rate, characterized by relatively low dark conductivity and relatively high photosensitivity in a certain crystalline range. The microcrystalline silicon solar cell with a conversion efficiency of 4.55% has been prepared by VHF-PECVD.  相似文献   

20.
沉积温度对微晶硅薄膜结构特性的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
采用PECVD技术,在玻璃衬底上沉积μc-Si:H薄膜. 用拉曼光谱、SEM和UV分光光度计对不同沉积温度下沉积的薄膜的结构特性进行分析. 研究发现:沉积温度较低时,随着沉积温度的升高,薄膜的晶化率增加;当沉积温度超过某一温度值时,随着温度的进一步升高,薄膜的晶化率降低. 这时,表面反应由表面扩散限制转变为流量控制. 该温度值随着硅烷含量的降低而降低. 关键词: 氢化微晶硅薄膜 拉曼散射谱 晶化率 UV分光光度计  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号