共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The reactions of M(CO)4(R′-DAB) (M = Mo) or W; R′-DAB = R′-N=CHCH=NR′ (R′ = i-propyl, t-butyl, or cyclohexyl) with SnCl4 in dichloromethane solution result in the formation, in high yield, of the orange, diamagnetic, seven-coordinate oxidative-addition products M(CO)3(R′-DAB)(SnCl3)Cl. The reactions of Mo(CO)3(R′-DAB)(SnCl3)Cl (R′ = i-Pr or Cy) with an excess of alkyl isocyanide RNC (R = CHMe2, CMe3, or C6H11) in the presence of KPF6 lead to the formation of [Mo(CNR)4(R′-DAB)Cl]PF6 or [Mo(CNR)5(R′-DAB)](PF6)2 depending upon the reaction stoichiometry and reaction conditions. The monocationic chloro species are converted to [Mo(CNR)5(R′-DAB)](PF6)2 upon reflux with the stoichiometric amount of RNC. Under similar reactions conditions M(CO)3(t-Bu-DAB)(SnCl3)Cl (M = Mo or W) derivatives react with alkyl isocyanides with the reductive-elimination of the elements of SnCl4 and the formation of octahedral M(CO)3(CNR)(t-Bu-DAB). The dark red compounds [Mo(CNCMe3)5(R′-DAB)](PF6)2 (R′ = i-Pr or Cy) react readily with cyanide ions at ambient temperatures in methanol to yield [Mo(CNCMe3)4(R′-DAB)(CN)]PF6. Attempts to thermally dealkylate the parent complexes [Mo(CNCMe3)5(R′-DAB)](PF6)2 (R′ = i-Pr or Cy) to these same cyano species were unsuccessful. 相似文献
4.
Shu Lin Xiao Yong Guang Liu Pei Juan Ma Guang Hua Cui 《Transition Metal Chemistry》2013,38(7):793-799
Two Ni(II) coordination polymers, [Ni(dmbbbi)(pic)2·3H2O] n (1) and [Ni(dmbbbi)1.5(pdc)·2H2O] n (2) (dmbbbi = 1,1′-(1,4-butanediyl)bis(5,6-dimethylbenzimidazole), Hpic = 2-picolinic acid, H2pdc = pyridine-2,6-dicarboxylic acid), have been hydrothermally synthesized by self-assembly of nickel chloride with a flexible bis(5,6-dimethylbenzimidazole) ligand and two different pyridine carboxylic acids. The compounds were characterized by physico-chemical and spectroscopic methods and by single-crystal diffraction. Compound 1 possesses 1D ribbon-like chains connected by dmbbbi ligands in bis-bridging mode, which are further extended into a 2D supramolecular network through O–H···O hydrogen bonding interactions between pic anions and lattice water molecules, giving a novel trinodal (3,3,4)-connected topology with the point symbol of (4.6.8)2(6.84.10). Compound 2 shows a 2D undulant {63} hexagonal (hcb) network. The structures of the two complexes are further stabilized by intramolecular π···π stacking interactions between the imidazole and N-containing nickel chelate rings. In addition, the fluorescence properties of 1 and 2 have been investigated in the solid state. 相似文献
5.
Mulyana Y Kepert CJ Lindoy LF Parkin A Turner P 《Dalton transactions (Cambridge, England : 2003)》2005,(9):1598-1601
The metal-directed assembly of new molecular frameworks incorporating 4-(4-pyridyl)pyrazole (L), containing non-linear coordination vectors, is presented. Three metallo-arrays of types [Co(LH)2(NO3)4], [Co(LH)2(H2O)4][NO3]4.H2O and [Zn2(L-H)2Cl2].2EtOH are reported. The cobalt(II) in [Co(LH)2(NO3)4] displays distorted octahedral geometry, with the two protonated pyridyl-pyrazole ligands coordinated through their pyrazole nitrogen atoms in a trans-orientation; the remaining four coordination sites are occupied by nitrate anions. Two internal hydrogen bonds occur between each pyrazole NH and the oxygens of adjacent coordinated nitrato ligands. Short intermolecular hydrogen bonds also occur between the two pyridinium hydrogens and bound nitrate ligands on different molecules to yield a two-dimensional hydrogen-bonded array. Two of these arrays interpenetrate to form an extended two dimensional layer; such layers stack throughout the crystal structure. A second product of type [Co(LH)2(H2O)4][NO3]4.H2O exists as two crystallographically independent, but chemically similar, forms. In each form, the two protonated pyridyl-pyrazole ligands occupy trans positions about the cobalt, with the remaining four coordination sites being filled by water molecules to yield a distorted octahedral coordination geometry. Intramolecular hydrogen-bonding is observed between the two non-coordinated pyrazoyl nitrogen atoms and bound water oxygen atoms. The third complex, [Zn2(L-H)2Cl2].2EtOH, contains dimer units consisting of two zinc(II) ions bridged by two pyrazoylate groups in which the coordination geometry of each zinc approximates a tetrahedron. Each zinc is bound to two deprotonated pyridine-pyrazole ligands (L-H), one pyridyl group (from a different dimeric unit) and one chloro ligand. Each pyridyl nitrogen thus connects each of these zinc dimers to an adjacent dimer unit, forming a three-dimensional network containing small voids. The latter are occupied by ethanol molecules which form hydrogen bonds to the chloro ligands. 相似文献
6.
A novel lead(II) complex with the Schiff base benzil bis(semicarbazone), [Pb(LH2)2(NO3)]NO3 · 1/2H2O, has been synthesised and structurally characterized as well as the free ligand. The coordination number of Pb(II) is seven provided by two neutral ligand molecules and one nitrato group. The most interesting characteristic of this complex is the different behaviour observed in the two bis(semicarbazone) molecules. One of them is a N2O2 chelate ligand, whereas the other one is bonded to the lead ion only through one of the semicarbazone branches. The seventh position in the lead coordination sphere is provided by one oxygen atom from a nitrato ligand. 相似文献
7.
It was found that the first step of thermal decomposition of the pyridinium salt of 1,3-bis(trimethylsilyl)-2, 4-dimercapto-2,4-dithioxo-1,3-diaza-25,45-diphosphetidine (I) most probably involves breakdown to the acid form HS(S)P(NHSiMe3)2P(S)SH (II). The latter is very unstable and decomposes further, the end-product being a polymer (PNS)x. In this work, the mechanism of this process is investigated.
Zusammenfassung Man fand, daß der erste Schritt der thermischen Zersetzung des Pyridiniumsalzes von 1,3-Bis(trimethylsilyl)-2,4-dimercapto-2,4-dithioxo-1,3-diaza-25,45-diphosphetidin (I) sehr wahrscheinlich einen Abbau zur Säureform HS(S)P(NHSiMe3)2P(S)SH (II) beinhaltet. Letztere ist sehr unbeständig und zersetzt sich, wobei als Endprodukt ein (PNS)x-Polymer entsteht. In vorliegendem Manuskript wird der Mechanismus dieses Prozesses näher untersucht.相似文献
8.
Several new 1D coordination polymers have been synthesised using the anionic ligand carbamoyldicyanomethanide, C(CN)2(CONH2)− (cdm). The polymeric complexes [Cu(cdm)2(py)2]·2MeOH (1), [Cu(cdm)2(4-Etpy)2]·2MeOH (2), [Cu(cdm)2(3,5-Me2pzH)2]·2MeOH (3) and [Cu(cdm)2(3-HOCH2py)2]·2MeOH (4) (py = pyridine; 3,5-Me2pzH = 3,5-dimethylpyrazole) contain Cu(II) atoms bridged by μ2-(N,N′) cdm ligands between equatorial and axial coordination sites. The use of monodentate co-ligands brings about polymeric products, in contrast to the use previously of chelating co-ligands which facilitate the formation of discrete products. These 1D polymeric complexes are connected by hydrogen bonding between the amide functionalities and the lattice solvent. In the structures of 3 and 4 the neutral ligands also contain hydrogen bond donor groups that supplement the amide ring motif. Two other complexes have been obtained that are polymeric chains of alkoxide-bridged Cu(II) dimers. The complexes [Cu(cdm)(MeO)(2-amp)] (5) and [Cu(cdm)(dmap)] (6) (2-amp = 2-(aminomethyl)pyridine and dmap = dimethylaminopropoxide) are remarkably similar despite the different ligands that they contain. Bridging between dimers is via μ2-(N,O) cdm ligands, consequently altering the nature of the hydrogen bonding between adjacent chains compared to the simple polymeric species 1–3. 相似文献
9.
Dan Tian SuiJun Liu DaShuai Zhang Ze Chang TongLiang Hu XianHe Bu 《中国科学:化学(英文版)》2013,56(12):1693-1700
Three new cobalt complexes, {[Co5(tci)2(bimb)3(µ3-O)2(H2O)2]·3DMF·4H2O} n (1), {[Co3(tci)2(bib)]·2DMF·2H2O} n (2) and {[Co(Htci)(bpea)0.5]·H2O} n (3) (H3tci = tris(2-carboxyethyl)isocyanurate, bimb = 4,4′-bis(imidazol-1-yl)biphenyl, bib = 1,4-bis(imidazol-1-yl)benzene, bpea = 1,2-bis(4-pyridyl)ethane, DMF = N,N′-dimethylformamide), have been successfully synthesized through the assembly of Co(II) ions, H3tci and different N-donor ligands, respectively. All complexes were structurally characterized by single crystal X-ray diffraction, elemental analyses, IR spectra, thermogravimetric (TG) analyses and X-ray powder diffraction (XRPD). Complex 1 exhibits a 3D three-fold parallel interpenetrated 3D → 3D structure with (65·8) CdSO4 topology. Complex 2 is built from [Co3(µ2-Ocarboxyl)2(CO2)4] clusters and linear bib ligands, displaying a two-fold parallel interpenetrated (3,8)-connected (43)2(46·618·84) topology, while complex 3 is a 3D pillar-layered structure involving an infinite -Co-(µ2-Ocarboxyl)(CO2)-Co-chain. The diverse structures of the three complexes indicate that the skeletons of different N-donor ligands play an important role in the assembly of such different frameworks. In addition, magnetic investigation indicates that besides spin-orbit coupling of Co(II) ions, there exist antiferromagnetic exchange interactions in Co5 and Co3 clusters of 1 and 2, respectively. 相似文献
10.
Bernd Fredelake Uwe Klingebiel Mathias Noltemeyer 《Journal of fluorine chemistry》2004,125(6):1007-1017
This paper presents the chemistry of ethylenediamines and fluorosilanes. The synthesis of thermally stable monosilyl (1-5)- and bis(fluorosilyl)ethylenediamines (6) is described. Starting with the dilithium salt of ethylenediamine and F2Si(CMe3)2 the five-membered 1,3-diaza-2-silacyclopentane (8) is obtained. The reaction of tetra- and trifluorosilanes with dilithiated bis(silyl)ethylenediamines leads to the formation of 1,3-diaza-2-fluorosilylsilacyclopentanes (9-14). Fluorosilanes substitute 8 in 1 and 3 positions (15-28). A fluorosilyl-bridged five-membered ring (29) is isolated in the reaction of 1-trimethylsilyl-1,3-diaza-2-silacyclopentane, BuLi and MeSiF3. In the synthesis of N-fluorosilyl-1,3-diaza-2-silacyclopentanes constitutional isomers were formed (30-33). Quantum-chemical calculations support the isomerisation mechanism. An iminosilane with an SiN double bond is the intermediate product of the rearrangement process.Crystal structures of 7, 13, 20 and 23 are reported. 相似文献
11.
Lei Shen Meng Jie Cao Fei Fei Zhang Qi Wu Li Yang Zhao Yi Ming Lu Qiao Yun Li Gao Wen Yang Bo Wei Jian Hua Zou 《Transition Metal Chemistry》2016,41(2):125-131
Reactions of three tetrazole carboxylate ligands, namely 5-(4-pyridyl)tetrazole-2-acetic acid (Hpytza), 1,3,5-tris(tetrazol-5-yl)benzene-N2,N2′,N2″-triacetic acid (H3tzpha) and 5-aminotetrazole-1-propanoic acid (Hatzpa) with Mn(NO3)2·6H2O in the presence of KOH afforded three new complexes, [Mn(pytza)2] (1), [Mn3(tzpha)2(H2O)12]·2CH3OH·10H2O (2) and [Mn(atzpa)2(H2O)2] (3), respectively. These complexes were characterized by elemental analysis, IR spectroscopy and single-crystal X-ray diffraction. Complex 1 displays a three-dimensional network while 2 and 3 show one-dimensional chains. Furthermore, the luminescence properties of these complexes were investigated at room temperature in the solid state. 相似文献
12.
13.
《Journal of Coordination Chemistry》2012,65(20):3684-3698
Five Zn(II)-ferrocenyl carboxylate complexes, {[Zn(OOCClH3C6Fc)(η 2OOCClH3C6Fc)(dpa)]?·?(H2O)} (1), [Zn(η 2-OOCClH3C6Fc)2(2,2′-dip)]?·?(H2O)0.25} (2), {[Zn(η-OOCClH3C6Fc)2(bix)]2?·?(THF)} (3), [Zn(η-OOCClH3C6Fc)2?·?(Hfcz)] n (4) and {[Zn(η-OOCClH3C6Fc)2(H2L1)]?·?(DMF)2} n (5) [dpa?=?2,2′-dipyridylamine, 2,2′-dip?=?2,2′-bipyridine, bix?=?1,4-bis(imidazol-1-ylmethyl)benzene, Hfcz?=?α-(2,4-difluorophenyl)-α-(1H-1,2,4-triazol-l-ylmethyl)-1H-1,2,4-triazole-l-ethanol, H2L1?=?N,N′-bis(pyridin-4-yl)pyridine-2,6-dicarboxamide, Fc?=?ferrocene, FcC6H3ClCOONa?=?sodium 2-chloro-4-ferrocenylbenzoic], have been synthesized and characterized. Single-crystal X-ray analysis reveals that 1 and 2 are mononuclear structures, 3 is a dimer, and 4 and 5 are 1-D structures. The five complexes exhibit some differences in their conformations, which can be attributed to the influence of adjuvant ligands. Notably, various π–π interactions as well as CH/π interactions are discovered in 1–5, and they have significant contributions to self-assembly. The electrochemical properties of 1–5 indicate that half-wave potentials shift to positive potential compared with that of 2-chloro-4-ferrocenylbenzoic acid. 相似文献
14.
15.
Rajiv K Rajni J 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2011,79(5):1042-1049
Designing tactics were tailored and followed by synthetic and formulation methodologies to prepare 2,6,11,15-tetraoxa-9,17-diaza-1,7,10,16-(1,2)-tetrabenzenacyclooctadecaphan-8,17-diene. Spectral techniques (MS, infrared, 1H NMR, 13C NMR, electronic and EPR), physiochemical measurements (elemental analysis, molar conductance and magnetic susceptibility), electrochemistry (cyclic voltammetry) and classical mechanics (molecular modeling) were employed for structural elucidation of Co(II) and Mn(II) coordination entities having N2O4 chromophore. Comparative spectral analysis revealed legating nature of N2O4 donor macrocycle and confirmed host/guest connectivity between ligand and metal(s). Mass spectrometry (MS) determined 1:1 stoichiometry in CEs. Further electrochemical study confirmed change in oxidation and reduction patterns of CEs. Inhibiting potential (antifungal screened against Aspergillus flavus) showed enhanced antimicrobial properties of CEs as compared to ligand. Molecular modeling was employed to find out different molecular features along with their stabilization energies. 相似文献
16.
Jan Keijsper Henk Van Der Poel Louis H. Polm Gerard Van Koten Kees Vrieze Paul F.A.B. Seignette Ronald Varenhorst Caspar Stam 《Polyhedron》1983,2(11):1111-1116
The crystal and molecular structures of c-Hex-DAB (c-hexyl-NC(H)C(H)N-c-hexyl; DAB = 1,4-diaza-1,3-butadiene) and of trans-[PdCl2(PPh3)(t-Bu-DAB)] are reported. Crystals of c-Hex-DAB are monoclinic with space group C2/c and cell constants: a = 24.70(1), b = 4.660(2), c = 12.268(3)Å, β = 107.66(4)°, Z = 4. The molecule has a flat E-s-trans-E structure with bond lengths of 1.258(3)Å for the CN double bond and 1.457(3)Å for the central CC′ bond. These bond lengths and the NC-C′ angle of 120.8(2)° indicate that the C- and N-atoms are purely sp2-hybridized and that there is little or no conjugation within the central DAB skeleton. Crystals of trans-[PdCl2(PPh3)(t-Bu-DAB)] are triclinic with space group P-1 and cell constants: a = 17.122(3), b = 18.279(3), c = 10.008(5)Å, α = 96.77(2), β = 95.29(3), γ = 109.79(2). Z = 4. The t-Bu-DAB ligand is coordinated to the metal via one lone pair only. In this 2e; σ-N coordination mode the E-s-trans-E conformation of the free DAB-ligand is still present and the bonding distances within the DAB-ligand are hardly affected. [CN: 1.261(10)Å; CC′: 1.479(10)Å (mean).] The PdN-, NC- and central CC′-bond lengths are compared with those found in other metal -R-DAB complexes. 相似文献
17.
Using the sterically hindered 2,6-dimesitylbenzoate ligand Mes2ArCO2-, a series of mononuclear Fe(II) carboxylate complexes has been obtained with the general formula (Mes2ArCO2)2Fe(base)2 (base = 1-methylimidazole (MeIm), pyridine (Py), 2-picoline (2-Pic), 2,5-lutidine (2,5-Lut), 2,6-lutidine (2,6-Lut), (base)2 = N,N,N',N'-tetramethylethylenediamine (TMEDA)). For the monodentate base adducts, single-crystal X-ray diffraction studies revealed several different structural types ranging from distorted tetrahedral to distorted octahedral that correlate with the degree of alpha-substitution of the N-donors. Increasing alpha-substitution leads to the lengthening of the Fe-N bond, which in turn results in a change in carboxylate binding mode from eta 1 to eta 2. We surmise that this change is due to an electrostatic effect and is driven by increasing the Lewis acidity of the Fe center. Such a simple process for inducing carboxylate shifts could play a critical role in biological systems. 相似文献
18.
Summary Mixed ligand complexes ofcis-[M(MetH)Cl2] (M=Pd2+ and Pt2+; MetH=methionine) with 2,4-disubstituted pyrimidines were prepared and characterised. Thecis-[Pd(MetH)Cl2] complex reacted with cytosine (2-hydroxy-4-aminopyrimidine), isocytosine (2-amino-4-hydroxypyrimidine) and thiocytosine (2-thio-4-amino-pyrimidine) to form ternary complexes.cis-[Pt(MetH)Cl2] however reacted with cytosine, uracil (2,4-pyrimidine dione or 2,4-dihydroxypyrimidine) to yield the corresponding mixed ligand complexes. The primary ligand, methionine, binds to the metal ion through sulphur and amino nitrogenvia a six membered chelate ring. The secondary ligands (substituted pyrimidines) bind to the Pd2+ or Pt2+ metal ion through the ring nitrogen (N3), as monodentate ligand. Thiocytosine however acts as a bidentate ligand, coordinating to the metal ion through-SH and ring nitrogen (N3). All complexes are 11 electrolytes, except the thiocytosine complex, which is a 12 electrolyte. 相似文献
19.
Sibbons KF Al-Hashimi M Motevalli M Wolowska J Watkinson M 《Dalton transactions (Cambridge, England : 2003)》2004,(20):3163-3165
Incorporation of a tertiary amide donor within the framework of a C(2)-symmetric analogue of 1,4,7-triazacyclononane derived from L-valine results in the isolation of a very rare example of a classical Werner copper(II) complex in which tertiary amide coordination occurs; despite the monomeric nature of the complex in the solid state, frozen solution EPR studies reveal the presence of a triplet ground state consistent with a dimeric species. 相似文献
20.
Sugai Y Fujii S Fujimoto T Yano S Mikata Y 《Dalton transactions (Cambridge, England : 2003)》2007,(33):3705-3709
The 2,2'-dipicolylamine (DPA)-tethered thioglycoside ligand, N,N-bis(2-pyridylmethyl)-2-aminoethyl 1-deoxy-1-thio-2,3,4,6-tetra-O-acetyl-beta-d-glucopyranoside (sL1), has been prepared and its copper(II) complex synthesized. Using copper(II) chloride, the copper complex was isolated as a chloride-bound species formulated as [Cu(sL1)Cl(ClO(4))](1). The corresponding O-glycoside complex ([Cu(L1)Cl](ClO(4)), 2) was also prepared using L1 (N,N-bis(2-pyridylmethyl)-2-aminoethyl 2,3,4,6-tetra-O-acetyl-beta-d-glucopyranoside), and both complexes were characterized and compared by means of X-ray crystallography, cyclic voltammetry, electronic absorption and circular dichroism (CD) spectra. Although both complexes exhibited similar copper coordination geometries, the absolute configuration of the O/S chiral center generated by the copper coordination was inverted. The electronic and CD spectra of acetonitrile solutions of 1 and 2 were different likely due to the presence of a copper-sulfur charge-transfer band for 1. Complex also exhibits a large Cotton effect around 700 nm. The corresponding d-d transition of the copper(II) center reveals that the asymmetric copper-sulfur (oxygen) coordination remains even in solution. 相似文献