首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To carry out essential life processes, nature has had to evolve heme enzymes capable of synthesizing and manipulating complex molecules. These proteins perform a plethora of chemical reactions utilizing a single iron porphyrin active site embedded within an evolutionarily designed protein pocket. We herein report the first class of metal-organic materials (MOMs) that mimic heme enzymes in terms of both structure and reactivity. The MOMzyme-1 class is based upon a prototypal MOM, HKUST-1, into which catalytically active metalloporphyrins are selectively encapsulated in a "ship-in-a-bottle" fashion within one of the three nanoscale cages that exist in HKUST-1. MOMs offer unparalleled levels of permanent porosity and their modular nature affords enormous diversity of structures and properties. The MOMzyme-1 class could therefore represent a new paradigm for heme biomimetic catalysis since it combines the activity of a homogeneous catalyst with the stability and recyclability of heterogeneous catalytic systems within a single material.  相似文献   

2.
Metallic nickel is a powerful electrocatalyst in alkaline solution and is able to be used in the alkaline fuel cell. However, in acidic solution, electrocatalysis is impossible because the metal is subject to rapid corrosion at low pH for all potentials at which an acidic fuel cell would operate. Here we report the synthesis and passive nature of a nickel-carbon nanostructured material which shows electrocatalytic activity. A thin film composed of nickel and carbon prepared by co-sputtering a graphite target partially covered with a nickel foil shows remarkable passivity against corrosion when polarized in hot sulphuric acid. The film, which contains 21 atom-% nickel, also shows significant electrocatalysis of the hydrogen oxidation reaction, and therefore forms the basis of a new type of fuel cell anode catalyst. High-resolution transmission electron microscopy (HRTEM) reveals a nanostructure of carbon-encapsulated nickel nanocrystals of ≤ca. 4 nm diameter. The passive nature of the material against corrosion is due to protection generated by the presence of a very thin carbon-rich layer encapsulating the nanoparticulate catalyst: this is a new form of passivation.  相似文献   

3.
The oxidative stability of encapsulated product is a critical parameter in many products from food to pharmaceutical to cosmetic industries. The overall objective of this study was to correlate differences in the distribution pattern of encapsulated material within solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) with the relative susceptibility of these materials to undergo oxidation. The distribution of an encapsulated lipid soluble dye (Nile Red) in SLNs and NLCs was quantitatively measured using fluorescence imaging. The relative susceptibility of the encapsulated material to react with free radicals generated in the aqueous phase and oxygen from the ambient environment was measured using peroxyl radical and oxygen sensitive fluorescent dyes encapsulated in the lipid phase of colloidal particles respectively. Imaging measurements demonstrate a significant exclusion of the encapsulated dye molecules from the lipid core of SLNs as compared to NLCs. Imaging results also showed significant differences in the intraparticle distribution of encapsulated dye between NLCs containing 1 and 10% liquid lipid. On the basis of these differences in distribution, we hypothesized that the relative susceptibility of encapsulated material to peroxyl radicals and oxygen would be in the order SLNs > 1% NLC > 10% NLC. Measurement of relative susceptibility of peroxyl radical sensitive dye encapsulated in SLNs and NLCs to peroxyl radicals generated in the aqueous phase validated the proposed hypotheses. However, the susceptibility of encapsulated oxygen sensitive dye to ambient oxygen was not significantly different between SLNs and NLCs. The results of this study demonstrate that difference in distribution pattern of encapsulated material within colloidal particles can significantly influence the susceptibility of encapsulated material to react with free radicals. Overall, this study demonstrates a comprehensive approach to characterize the susceptibility of encapsulated materials in colloidal particles to oxidation processes.  相似文献   

4.
  相似文献   

5.
A procedure for forming nanostructured materials by impregnation filling of pores of poly(ethylene terephthalate) track membranes with polymeric compounds was examined. The relationships of formation of these materials were elucidated, and the structural and surface properties of these materials were studied.  相似文献   

6.
7.
Backbone dynamics of ubiquitin confined within AOT reverse micelles have been evaluated based on analysis of 15N NMR relaxation data. Results indicate that upon encapsulation the protein experiences a slight overall increase in the value of the order parameter, S2, indicating a restriction in the average amplitude of fast local N-H bond vector motion. The largest increases in S2 upon encapsulation were concentrated in the region of beta-sheet 2 and, additionally, at the transitions of secondary structure motifs and loop regions. In addition, statistical analysis of the residue average ratio of the 15N longitudinal and transverse NMR relaxation time constants indicates that chemical exchange contributions to relaxation are consistent with previous aqueous studies. Earlier studies have demonstrated that native protein structure can be maintained in the encapsulated state. These results presented here establish that the dynamical behavior of encapsulated ubiquitin is likewise nativelike and adds important new observations regarding the enhancement of protein stability under confinement.  相似文献   

8.
This paper briefly reviews the potential applicability of analytical transmission electron microscopy (TEM) to elucidate both structural and chemical peculiarities of materials at high lateral resolution. Examples of analytical TEM investigations performed by energy-dispersive X-ray spectroscopy (EDXS), electron energy loss spectroscopy (EELS), and energy-filtered TEM (EFTEM) are presented for different materials systems including metals, ceramics, and compound semiconductors. In particular, results are given of imaging the element distribution in the interface region between gamma matrix and gamma' precipitate in the nickel-based superalloy SC16 by energy-filtered TEM. For core-shell structured BaTiO(3) particles the chemical composition and even the chemical bonding were revealed by EELS at a resolution of about 1 nm. A sub-nanometer resolution is demonstrated by energy-selective images of the Ga distribution in the surrounding of (In,Ga)As quantum dots. Moreover, the element distribution in (Al,Ga)As/AlAs multilayers with linear concentration gradients in a range of about 10 nm was investigated by EDXS line-profile analyses and EFTEM.  相似文献   

9.
We have synthesized and characterized a new class of heme-peptide complexes using disulfide-linked hairpin-turn and cyclic peptides and compared these to their linear analogues. The binding affinities, helicities, and mechanism of binding of linear, hairpin, and cyclic peptides to [FeIII(coproporphyrin-I)]+ have been determined. In a minimalist approach, we utilize amphiphilic peptide sequences (15-mers), where a central histidine provides heme ligation, and the hydrophobic effect is used to optimize heme-peptide complex stability. We have incorporated disulfide bridges between amphiphilic peptides to make hairpin and even cyclic peptides that bind heme extremely well, roughly 5 x 106 times more strongly than histidine itself. CD studies show that the cyclic peptide heme complexes are completely alpha-helical. NMR spectra of paramagnetic complexes of the peptides show that the 15-mer peptides bind sequentially, with an observable monopeptide, high-spin intermediate. In contrast, the cyclic peptide complexes ligate both imidazoles cooperatively to the heme, producing only a low-spin complex. Electrochemical measurements of the E1/2 of the FeIII(coproporphyrin-I)+ complexes of these peptides are all at fairly low potentials, ranging from -215 to -252 mV versus NHE at pH 7.  相似文献   

10.
《Chemical physics letters》1999,291(1-2):31-36
We report the discovery of elongated fullerene capsules contained within single-wall carbon nanotubes, as well as new findings pertaining to encapsulated, self-assembled chains of C60. The observed structures comprise a new, complete class of hybrid materials: hemispherically-capped graphene cylinders of various lengths within carbon nanotubes. Short capsules and chains comprised of only a few C60 molecules spontaneously jump nanometer distances along the axis of the containing tube. A model explaining this behavior is proposed.  相似文献   

11.
We report here the results of our computational studies on porous catalysts to bring out the catalytic role played by nanostructures. We present two typical case studies where the molecular dynamic (MD) and quantum chemical (QC) techniques have revealed the important structural aspects involved in the functioning of nanostructured microporous materials. The central role played by the exchanged metal cations of zeolite A in the molecular sieving of nitrogen and oxygen was studied by MD calculations. The results indicated that the mobility of the exchanged cations which are dependent on temperature causes the separation of nitrogen and oxygen molecules. The real time visualization of the dynamic behavior of the exchanged cations during the MD process aids the understanding of this intriguing process occurring inside the micropores of the zeolites. The controlled pore opening of hydrated VPI-5 molecular sieve by careful removal of water leads to a large one dimensional channel. The possibility of anchoring organometallics, namely porphyrins with ‘enzyme-like’ active sites were studied using QC calculations. The analysis of the 3-d contours of electron density and molecular electrostatic potential maps corresponding to various porphyrin systems and the cluster models representing VPI-5 framework brought out the probable locations for porphyrins inside VPI-5.  相似文献   

12.
13.
We have measured the thermal conductivity of bulky pellets made of various boron nitride (BN)-based nanomaterials, including spherical nanoparticles, perfectly structured, bamboo-like nanotubes, and collapsed nanotubes. The thermal conductivity strongly depends on the morphology of the BN nanomaterials, especially on the surface structure. Spherical BN particles have the lowest thermal conductivity while the collapsed BN nanotubes possess the best thermoconductive properties. A model was proposed to explain the experimental observations based on the heat percolation passage considerations.  相似文献   

14.
This work describes a new route for producing bulk materials from extremely high loading levels of inorganic nanoparticles, approaching 80%, while maintaining optical transparency. More specifically, LaF3 nanoparticles with trifluorovinyl ether (TFVE) ligands were synthesized. Because a single nanoparticle will have many functional ligands attached to its surface, the nanoparticles themselves act as cross-linkers, without the need for a matrix phase for the composite, promoting homogeneity and reduced optical scattering. In order to distinguish these new types of composites from traditional nanocomposites, they are referred to here as "omni"-composites because the material is composed entirely (Lat. omnino) of composite nanoparticles.  相似文献   

15.
The SBA-15 materials were synthesized by the hydrothermal method using tetraethyl orthosilicate as silica source and P123 as template agent. The synthesis process was accomplished varying the time during the hydrothermal processing. For the synthesis monitoring, a small amount of sample was removed at different times, and analyzed by thermal analysis in order to determine the temperature ranges related to water desorption, template decomposition and silanol condensation for the SBA-15 nanostructured materials, as well as to estimate their quality. The samples were characterized by X-ray diffraction, infrared absorption spectroscopy, scanning electron microscopy, BET surface area and pore size distribution. The activation energy relative to decomposition of P123 template was determined from TG curves, using multiple heating rates and applying the model free kinetics. From the obtained data, it is possible to monitor the hydrothermal synthesis of SBA-15 in order to control the properties and conditions to prepare ordered materials.  相似文献   

16.
17.
Two model drugs of different physico-chemical and pharmaceutical properties (ibuprofen, acetaminophen) have been incorporated together or separately in silica-based microspheres using sol–gel and spray-drying processes. A variable amount of a neutral surfactant Brij-56© has also been added. The properties of the microspheres vary significantly depending on their composition. Three kinds of texture are identified: (1) silica containing spheroid nano-domains (formed by ibuprofen; diameters between 20 and 100 nm), (2) silica containing worm-like mesophases (formed by Brij-56© and both model drugs, typical correlation distances ~6 nm), (3) silica intimately mixed with the drug (acetaminophen) without visible phase-separation. The kinetics of drug release in simulated intestinal fluid strongly depend on these textures. The association of ibuprofen and acetaminophen in a single type of microsphere and without surfactant favours a concomitant release. Possible mechanisms of materials’ formation are discussed.  相似文献   

18.
19.
Carbon nanotubes (CNTs)-based devices and their applications have received more and more attention, and several biomolecules have been found to be encapsulated into the inner space of the CNTs spontaneously. In this work, the molecular dynamics simulations demonstrate that a collagen-like peptide with a hydrophobic center and hydrophilic surfaces could be inserted into CNTs spontaneously but slowly. Then the dynamic mechanism of the encapsulation process was investigated by a series of steered molecular dynamics simulations. The van der Waals interaction between the peptide and the carbon nanotubes was proved to be a positive factor for this insertion process, whereas the major resistance of this process is attributed to the repelling of the trapped water molecules and the breaking of the hydrogen-bond networks of water molecules around the peptide. Because of the synthetical effect of these interactions, there is an optimal tube size corresponding to effective encapsulation of the protein into the CNTs for a given kind of protein molecule.  相似文献   

20.
Titanium oxo-clusters, well-defined monodispersed nano-objects, are appropriate nano-building blocks for the preparation of organic-inorganic materials by a bottom up approach. This critical review proposes to present the different structures of titanium oxo-clusters referenced in the literature and the different strategies followed to build up hybrid materials with these versatile building units. In particular, this critical review cites and reports on the most important papers in the literature, concentrating on recent developments in the field of synthesis, characterization, and the use of titanium oxo-clusters for the construction of advanced hybrid materials (137 references).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号