首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A parametric method is proposed to examine the relationship between neuronal activity, measured with event related potentials (ERPs), and the hemodynamic response, observed with functional magnetic resonance imaging (fMRI), during an auditory oddball paradigm. After verifying that the amplitude of the evoked response P300 increases as the probability of oddball target presentation decreases, we explored the corresponding effect of target frequency on the fMRI signal. We predicted and confirmed that some regions that showed activation changes following each oddball are affected by the rate of presentation of the oddballs, or the probability of an oddball target. We postulated that those regions that increased activation with decreasing probability might be responsible for the corresponding changes in the P300 amplitude. fMRI regions that correlated with the amplitude of the P300 wave were supramarginal gyri, thalamus, insula and right medial frontal gyrus, and are presumably sources of the P300 wave. Other regions, such as anterior and posterior cingulate cortex, were activated during the oddball paradigm but their fMRI signal changes were not correlated with the P300 amplitudes. This study thus shows how combining fMRI and ERP in a parametric design identifies task-relevant sources of activity and allows separation of regions that have different response properties.  相似文献   

2.
The dorsal stream is a dominant visuomotor pathway that connects the striate and extrastriate cortices to posterior parietal areas. In turn, the posterior parietal areas send projections to the frontal primary motor and premotor areas. This cortical pathway is hypothesized to be involved in the transformation of a visual input into the appropriate motor output. In this study we used functional magnetic resonance imaging (fMRI) of the entire brain to determine the patterns of activation that occurred while subjects performed a visually guided motor task. In nine human subjects, fMRI data were acquired on a 4-T whole-body MR system equipped with a head gradient coil and a birdcage RF coil using aT*2-weighted EPI sequence. Functional activation was determined for three different tasks: (1) a visuomotor task consisting of moving a cursor on a screen with a joystick in relation to various targets, (2) a hand movement task consisting of moving the joystick without visual input, and (3) a eye movement task consisting of moving the eyes alone without visual input. Blood oxygenation level-dependent (BOLD) contrast-based activation maps of each subject were generated using period cross-correlation statistics. Subsequently, each subject's brain was normalized to Talairach coordinates, and the individual maps were compared on a pixel by pixel basis. Significantly activated pixels common to at least four out of six subjects were retained to construct the final functional image. The pattern of activation during visually guided movements was consistent with the flow of information from striate and extrastriate visual areas, to the posterior parietal complex, and then to frontal motor areas. The extensive activation of this network and the reproducibility among subjects is consistent with a role for the dorsal stream in transforming visual information into motor behavior. Also extensively activated were the medial and lateral cerebellar structures, implicating the cortico–ponto–cerebellar pathway in visually guided movements. Thalamic activation, particularly of the pulvinar, suggests that this nucleus is an important subcortical target of the dorsal stream.  相似文献   

3.
We studied neural interactions between brain areas involved in exogenous (stimulus-driven) control of visuospatial attention. With event-related functional magnetic resonance imaging (fMRI), we investigated changes of connectivity during shifts of spatial attention from an attended location to a previously unattended target location. Using a 3-T scanner, fMRI data were acquired from three healthy volunteers. According to a central visual cue, participants directed endogenous spatial attention to the left or the right visual hemifield for blocks of 56 s. Peripheral visual targets were presented unpredictably in either the attended hemifield (valid trials, 80%) or in the unattended hemifield (invalid trials, 20%) and participants performed a two-alternative forced-choice discrimination task with the target, irrespective of cue validity. In accordance with previous results, we found that the temporal–parietal junction (TPJ) mediates the shift of spatial attention toward stimuli presented at the unattended side (i.e., invalid trials). We critically studied the interaction between occipital areas responding to the visual stimuli and other brain regions in order to find regions functionally coupled with the occipital cortex during invalid trials. We found that the coupling between occipital areas processing visual stimuli and the TPJ selectively increased during invalid trials. Our results highlight how changes of connectivity between brain areas can describe attentional processes such as stimulus-driven shifts of spatial attention.  相似文献   

4.
In combination with cognitive tasks entailing sequences of sensory and cognitive processes, event-related acquisition schemes allow using functional MRI to examine not only the topography but also the temporal sequence of cortical activation across brain regions (time-resolved fMRI). In this study, we compared two data-driven methods--fuzzy clustering method (FCM) and independent component analysis (ICA)--in the context of time-resolved fMRI data collected during the performance of a newly devised visual imagery task. We analyzed a multisubject fMRI data set using both methods and compared their results in terms of within- and between-subject consistency and spatial and temporal correspondence of obtained maps and time courses. Both FCM and spatial ICA allowed discriminating the contribution of distinct networks of brain regions to the main cognitive stages of the task (auditory perception, mental imagery and behavioural response), with good agreement across methods. Whereas ICA worked optimally on the original time series, averaging with respect to the task onset (and thus introducing some a priori information on the stimulation protocol) was found to be indispensable in the case of FCM. On averaged time series, FCM led to a richer decomposition of the spatio-temporal patterns of activation and allowed a finer separation of the neurocognitive processes subserving the mental imagery task. This study confirms the efficacy of the two examined methods in the data-driven estimation of hemodynamic responses in time-resolved fMRI studies and provides empirical guidelines to their use.  相似文献   

5.
Most studies investigating mental numerical processing involve adult participants and little is known about the functioning of these systems in children. The current study used functional magnetic resonance imaging (fMRI) to investigate the neural correlates of numeracy and the influence of age on these correlates with a group of adults and a group of third graders who had average to above average mathematical ability. Participants performed simple and complex versions of exact and approximate calculation tasks while in the magnet. Like adults, children activated a network of brain regions in the frontal and parietal lobes during the calculation tasks, and they recruited additional brain regions for the more complex versions of the tasks. However, direct comparisons between adults and children revealed significant differences in level of activation across all tasks. In particular, patterns of activation in the parietal lobe were significantly different as a function of age. Findings support previous claims that the parietal lobe becomes more specialized for arithmetic tasks with age.  相似文献   

6.
Functional magnetic resonance imaging (fMRI) was performed in 30 healthy adults to identify the location, magnitude, and extent of activation in brain regions that are engaged during the performance of Conners' Continuous Performance Test (CPT). Performance on the task during fMRI was highly correlated with performance on the standard Conners' CPT in the behavioral testing laboratory. An extensive neural network was activated during the task that included the frontal, cingulate, parietal, temporal, and occipital cortices; the cerebellum and the basal ganglia. There was also a network of brain regions which were more active during fixation than task. The magnitude of activation in several regions was correlated with reaction time. Among regions that were more active during task, the overall volume of supratentorial activation and cerebellar activation was greater in the left hemisphere. Frontal activation was greater in dorsal than in ventral regions, and dorsal frontal activation was bilateral. Ventral frontal region and parietal lobe activation were greater in the right hemisphere. The volume of clusters of activation in the extrastriate ventral visual pathway was greater in the left hemisphere. This network is consistent with existing models of motor control, visual object processing and attentional control and may serve as a basis for hypothesis-driven fMRI studies in clinical populations with deficits in Conners' CPT performance.  相似文献   

7.
Previous imaging work has identified a frontoparietal network in the human brain involved in many different cognitive functions, as well as in simple updates of attended information. To determine whether a similar network is present in the monkey brain and direct future electrophysiological recordings, we examined the activation of frontoparietal areas during visual stimulation in the awake, fixating monkey. We measured activity with BOLD fMRI in three animals and analyzed the data individually for each animal and at group level. We found reliable activations in lateral prefrontal and parietal areas, even though task-related decision making was minimal, as a response to simple update of visual information. These activations were significant for each individual animal, as well as at group level. Similar to human imaging results the update of visual input was enough to activate an extensive network of frontoparietal cortex in the macaque brain, a network which is normally associated with complex cognitive control processes.  相似文献   

8.
使用10 Hz调制的低功率激光针灸刺激探究大脑皮质反应.以功能性核磁共振造影技术探讨当激光针灸刺激左脚涌泉穴(K1)时,大脑可能产生的反应机制.研究发现调制激光针灸所引发显著的大脑活化反应,包括右额叶中央前回、右额叶上回、左额叶中央前回、左顶叶中央后回、左侧下部顶叶、左小脑舌前叶、左海马旁回和左小脑山顶等区域.安慰剂组实验并没有发现在脑部有任何活化反应,大多数反应区域所涉及功能与记忆、注意力及自我意识等有关联.结果显示出调制激光针灸的大脑血液动力学反应,并隐含此反应机制不只是依据传入感觉信息处理,而且还有着随外部刺激的变化而有所改变的血液动力学性质.  相似文献   

9.
The objective of this study was to detect auditory cortical activation in non-sedated neonates employing functional magnetic resonance imaging (fMRI). Using echo-planar functional brain imaging, subjects were presented with a frequency-modulated pure tone; the BOLD signal response was mapped in 5 mm-thick slices running parallel to the superior temporal gyrus. Twenty healthy neonates (13 term, 7 preterm) at term and 4 adult control subjects. Blood oxygen level-dependent (BOLD) signal in response to auditory stimulus was detected in all 4 adults and in 14 of the 20 neonates. FMRI studies of adult subjects demonstrated increased signal in the superior temporal regions during auditory stimulation. In contrast, signal decreases were detected during auditory stimulation in 9 of 14 newborns with BOLD response. fMRI can be used to detect brain activation with auditory stimulation in human infants.  相似文献   

10.
In previous works, boosting aggregation of classifier outputs from discrete brain areas has been demonstrated to reduce dimensionality and improve the robustness and accuracy of functional magnetic resonance imaging (fMRI) classification. However, dimensionality reduction and classification of mixed activation patterns of multiple classes remain challenging. In the present study, the goals were (a) to reduce dimensionality by combining feature reduction at the voxel level and backward elimination of optimally aggregated classifiers at the region level, (b) to compare region selection for spatially aggregated classification using boosting and partial least squares regression methods and (c) to resolve mixed activation patterns using probabilistic prediction of individual tasks. Brain activation maps from interleaved visual, motor, auditory and cognitive tasks were segmented into 144 functional regions. Feature selection reduced the number of feature voxels by more than 50%, leaving 95 regions. The two aggregation approaches further reduced the number of regions to 30, resulting in more than 75% reduction of classification time and misclassification rates of less than 3%. Boosting and partial least squares (PLS) were compared to select the most discriminative and the most task correlated regions, respectively. Successful task prediction in mixed activation patterns was feasible within the first block of task activation in real-time fMRI experiments. This methodology is suitable for sparsifying activation patterns in real-time fMRI and for neurofeedback from distributed networks of brain activation.  相似文献   

11.
We studied the development of visual activation longitudinally in two infant monkeys aged 103-561 days using the BOLD fMRI technique under opiate anesthesia and compared the results with those obtained in three adult animals studied under identical conditions. Visual activation in primary visual cortex, V1, was strong and reliable in monkeys of the youngest and oldest ages, showing that functional imaging techniques give qualitatively similar results in infants and adults. Visual activation in extrastriate areas involved in processing motion (MT/V5) and form (V4) was not evident in the younger animals, but became more adult-like in the older animals. This delayed onset of measurable BOLD responses in extrastriate visual cortex may reflect delayed development of visual responses in these areas, although at this stage it is not possible to rule out either effects of anesthesia or of changes in cerebral vascular response mechanisms as the cause. The demonstration of visually evoked BOLD responses in young monkeys shows that the BOLD fMRI technique can usefully be employed to address functional questions of brain development.  相似文献   

12.
The analysis of functional magnetic resonance imaging (fMRI) data involves multiple stages of data pre-processing before the activation can be statistically detected. Spatial smoothing is a very common pre-processing step in the analysis of functional brain imaging data. This study presents a broad perspective on the influence of spatial smoothing on fMRI group activation results. The data obtained from 20 volunteers during a visual oddball task were used for this study. Spatial smoothing using an isotropic gaussian filter kernel with full width at half maximum (FWHM) sizes 2 to 30 mm with a step of 2 mm was applied in two levels — smoothing of fMRI data and/or smoothing of single-subject contrast files prior to general linear model random-effects group analysis generating statistical parametric maps. Five regions of interest were defined, and several parameters (coordinates of nearest local maxima, t value, corrected threshold, effect size, residual values, etc.) were evaluated to examine the effects of spatial smoothing. The optimal filter size for group analysis is discussed according to various criteria. For our experiment, the optimal FWHM is about 8 mm. We can conclude that for robust experiments and an adequate number of subjects in the study, the optimal FWHM for single-subject inference is similar to that for group inference (about 8 mm, according to spatial resolution). For less robust experiments and fewer subjects in the study, a higher FWHM would be optimal for group inference than for single-subject inferences.  相似文献   

13.
The temporal clustering analysis (TCA) is a novel and effective technique for obtaining brain activation maps when the timing and location of the activation are completely unknown. Performing the TCA method once can only detect the largest peak of the activation time windows well, if multiple response peaks at the same location of the brain occur. However, this limitation can be removed by using a TCA method in an iterative way in order for the smaller peaks to be detected. Our in vivo fMRI experiments with event-related visual tasks have demonstrated this ability.  相似文献   

14.
Previous studies have indicated that the BOLD-fMRI signal can be modified by tumor processes in close vicinity to functional brain areas. This effect has been investigated primarily for the perirolandic area but there is only a limited number of studies concerning frontal cortical regions. Therefore, the aim of the current study was to characterize BOLD-fMRI signal and activation patterns in patients with frontal brain tumors while performing a verbal fluency task. Six patients (ages 31-56 years) suffering from frontal (5 left sided and 1 right sided) intracerebral tumors were examined with fMRI while performing a verbal fluency task in a blocked paradigm design. Eight healthy volunteers served as the control group. The patients (5 right and 1 left handed) demonstrated left frontal activation which could be clearly located outside the tumor area and adjacent edema with varying degrees of additional right frontal activation. In the predominant left frontal activation cluster, the mean voxel based z-score and cluster size were not statistically different between patients and controls. The present fMRI study is indicating that language related BOLD signal changes in the frontal cortex of patients with tumors close to functional areas were comparable to the signal in normal controls. Additionally, the temporal hemodynamic response characteristic was comparable in both groups. This is an important finding consistent with PET results and corroborates the feasibility of functional mapping approaches in patients with tumors affecting the frontal lobe. Additional studies investigating alterations of the hemodynamic response depending on tumor location and histology are required in order to further elucidate the association between pathophysiology and BOLD fMRI signal.  相似文献   

15.
By measuring the changes of magnetic resonance signals during a stimulation, the functional magnetic resonance imaging (fMRI) is able to localize the neural activation in the brain. In this report, we discuss the fMRI application of the spatial independent component analysis (spatial ICA), which maximizes statistical independence over spatial images. Included simulations show the possibility of the spatial ICA on discriminating asynchronous activations or different response patterns in an fMRI data set. An in vivo visual stimulation fMRI test was conducted, and the result shows a proper sum of the separated components as the final image is better than a single component, using fMRI data analysis by spatial ICA. Our result means that spatial ICA is a useful tool for the detection of different response activations and suggests that a proper sum of the separated independent components should be used for the imaging result of fMRI data processing.  相似文献   

16.
Understanding the impact of variations in the acoustic signal is critical for the development of auditory and language fMRI as an experimental tool. We describe the dependence of the BOLD signal and speech intelligibility on the intensity of auditory stimuli. Eighteen subjects were imaged on a 1.5-T MRI scanner. Speech stimuli were English monosyllabic words played at five intensity levels. Intrasubject reproducibility was measured on one subject by presenting the stimulus five times at the same intensity level. Intelligibility was measured during data acquisition as subjects signaled when hearing two targets. Each functional trial consisted of four cycles (30 s off-30 s on). Five oblique slices covering primary and association auditory areas were imaged. Activated voxels were identified by cross-correlation analysis and their percent signal change (delta S) was measured. Intersubject differences in activation extent, asymmetry, and dependence on intensity were striking. Volume of activation was significantly greater in the left than in the right hemisphere. Intrasubject reproducibility for delta S was higher than for volume of activation. delta S and intelligibility showed a similar dependence on intensity suggesting that not only intensity but also intelligibility affect the fMRI signal.  相似文献   

17.

Background

Our goal was to examine the spatiotemporal integration of tactile information in the hand representation of human primary somatosensory cortex (anterior parietal somatosensory areas 3b and 1), secondary somatosensory cortex (S2), and the parietal ventral area (PV), using high-resolution whole-head magnetoencephalography (MEG). To examine representational overlap and adaptation in bilateral somatosensory cortices, we used an oddball paradigm to characterize the representation of the index finger (D2; deviant stimulus) as a function of the location of the standard stimulus in both right- and left-handed subjects.

Results

We found that responses to deviant stimuli presented in the context of standard stimuli with an interstimulus interval (ISI) of 0.33s were significantly and bilaterally attenuated compared to deviant stimulation alone in S2/PV, but not in anterior parietal cortex. This attenuation was dependent upon the distance between the deviant and standard stimuli: greater attenuation was found when the standard was immediately adjacent to the deviant (D3 and D2 respectively), with attenuation decreasing for non-adjacent fingers (D4 and opposite D2). We also found that cutaneous mechanical stimulation consistently elicited not only a strong early contralateral cortical response but also a weak ipsilateral response in anterior parietal cortex. This ipsilateral response appeared an average of 10.7 ± 6.1 ms later than the early contralateral response. In addition, no hemispheric differences either in response amplitude, response latencies or oddball responses were found, independent of handedness.

Conclusion

Our findings are consistent with the large receptive fields and long neuronal recovery cycles that have been described in S2/PV, and suggest that this expression of spatiotemporal integration underlies the complex functions associated with this region. The early ipsilateral response suggests that anterior parietal fields also receive tactile input from the ipsilateral hand. The lack of a hemispheric difference in responses to digit stimulation supports a lack of any functional asymmetry in human somatosensory cortex.  相似文献   

18.
The purpose of this study was to investigate the reliability of functional magnetic resonance imaging (fMRI) by using either a projection screen or video goggles as stimulus modality. A sequence of visual stimuli were presented to the same subject at different occasions. The sequence was optimized with a genetic algorithm. In five sessions the stimuli were presented using a projection screen viewed through a mirror in the head coil and in five sessions using video goggles. Failure to detect visual activation in the medial left hemisphere was observed in sessions using the projection screen as stimulus modality. Decreased thresholds for P values and cluster size resulted in activation outside the occipital lobe and did not significantly increase activated areas in this region. Results in this study indicate that presentation of fMRI tasks with visual routes is more reliable with direct input through video goggles than with the conventional use of projection screens. Failure to detect crucial visual areas has severe consequences for tumor surgery in the visual cortex. Inferior visual impression might also have negative consequences for cognitive tests with high demand on attention and perception.  相似文献   

19.
Comparative functional neuroimaging studies using the block design paradigm have previously demonstrated that there are no significant differences in the location of areas of cerebral activation when native Chinese speakers independently process single words or sentences in both the Chinese (first) and English (second) languages. While it has also been documented that significant domains of brain response include the inferior to middle left frontal lobe, the latency, amplitude and duration of the associated hemodynamic changes during isolated neural processing of Chinese and English languages still remain unknown. The aim of this study, therefore, was to examine the characteristics of the hemodynamic alterations in the above-mentioned regions with event-related functional MRI (ER-fMRI) when native Chinese speakers performed verb generation tasks in both the Chinese (first) and English (second) languages. Our results demonstrate the presence of a similar neural activity-induced hemodynamic response in the inferior to middle left frontal lobe during both tasks. Further, there were also no statistically significant differences among the variables that described the hemodynamic response curves. These findings strongly imply that the underlying neural mechanism for Chinese (first) and English (second) language processing may be similar in native Chinese speakers.  相似文献   

20.
Submarine warfare continues to pose a threat in present-day military operations. Visual displays play a dominant role for operator detection and classification of underwater and surface targets. However, the visual modality is ineffective for the detection of transient signals. In spite of quieter submarines, transient sounds such as hull popping are difficult to disguise, which makes them more likely to be detected via an auditory display. Operators tend to use auditory displays less often because several factors can impede effective aural processing. In this paper, the sonar problem is reviewed followed by some proposed techniques for making more effective use of the auditory modality for the presentation of sonar signals as a means of further improving operator detection and classification of targets. Some recommendations for augmenting the aural presentation of sonar signals over headphones are then discussed. Key research areas include: (1) a reduction of the sound level of the ambient noise in noisy environments should improve the likelihood that the operator will detect weak signals; (2) the provision to replay sound bites of interest and to compare these against a library of known archetypes should lead to increased accuracy in target classification; (3) the ability to present sonar beams in a three-dimensional auditory display where the spatial position of each sonar beam corresponds to the actual position of the source in the ocean should enable the operator to monitor multiple beams and increase his/her situational awareness. Ultimately, the viability of an auditory display is dependent on operator hearing acuity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号