首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The search for a model that can be used to describe the optical excitation migration in dendrimers has attracted great attention. In most cases in a dendrimer the conjugation is disrupted at the branching point; however, the excitation is delocalized. The strength of interactions among neighboring chromophores plays a key role in determining the energy migration mechanism. Conversely, having many identical chromophores held tightly together in an ordered macromolecular architecture will allow for many dipoles to be accessible for optical excitation. Therefore, the relative orientation of dipoles will be important in determining the mechanism of energy migration. Here we report the synthesis and photo-physical investigation of triarylamine-based dendrimers. Two important synthetic steps were utilized in the synthesis. First, we employed diphenylmethyl protective groups on the amines to assist in deprotective hydrogenolysis of the larger structures. Second, highly active catalysts for formation of both di- and triarylamines that are based on a 1:1 ratio of P(t-Bu)3 and Pd(dba)2 improved reaction yields of the C-N bond formation and decreased reaction times The energy migration processes in the dendrimers were investigated utilizing ultrafast time-resolved fluorescence anisotropy measurements. The fluorescence anisotropy of all three dendrimers decayed to a residual value within approximately 100 fs. This fluorescence anisotropy decay showed a general trend in decreasing with increasing dendrimer generation. The residual anisotropy value also showed a gradual decrease with an increase in the dendrimer generation. This fast energy depolarization is discussed through a coherent excitonic mechanism among dipoles oriented in different directions. We believe that the formation of coherent domains leads to fast energy migration extending over a large part of the dendrimer.  相似文献   

2.
Fluorescence resonance energy transfer (FRET) from coumarin 480 (C480) to fluorescein 548 (F548) in a sodium dioctyl sulfosuccinate (AOT) reverse micelle is studied by picosecond and femtosecond emission spectroscopy. In bulk water, at the low concentration of the donor (C480) and the acceptor (F548), no FRET is observed. However, when the donor (C480) and the acceptor (F548) are confined in a AOT reverse micelle very fast FRET is observed. The time constants of FRET were obtained from the rise time of the emission of the acceptor (F548). In a AOT microemulsion, FRET is found to occur in multiple time scales--3, 200, and 2700 ps. The 3 ps component is assigned to FRET in the water pool of the reverse micelle with a donor-acceptor distance, 16 A. The 200 ps component corresponds to a donor-acceptor distance of 30 A and is ascribed to the negatively charged acceptor inside the water pool and the neutral donor inside the alkyl chains of AOT. The very long 2700 ps component may arise due to FRET from a donor outside the micelle to an acceptor inside the water pool and also from diffusion of the donor from bulk heptane to the reverse micelle. With increase in the excitation wavelength from 375 to 405 nm the relative contribution of the FRET due to C480 in the AOT reverse micelle (the 3 and 200 ps components) increases.  相似文献   

3.
Photoinduced excitation energy transport dynamics in oligothiophene-fullerene linked dyads, nT-C60 (n = 4, 8, and 12), have been investigated by femtosecond fluorescence up-conversion. In 8T-C60 and 12T-C60, each time profile of the fluorescence due to the 1nT* moiety consists of two components. The sub-picosecond component and a few picosecond components were experimentally evaluated depending on the lengths of oligothiophenes (n =8 and 12) and on the analyzing wavelength of the fluorescence. However, the time trace of the fluorescence due to 14T*-C60 decayed with a single short component in approximately 300 fs due to direct excited energy transfer (EET) from the 14T* moiety to the C60 moiety. On the basis of the kinetic models considering the short and long locally pi-conjugative thiophene segments in 8T-C60 and 12T-C60, the rate parameters of the elemental processes were evaluated. Sub-picosecond time constants of nT-C60 were found to be EET from the thiophene segment vicinal to the C60 moiety and intrachain energy transfer. Slower picosecond dynamics mainly corresponds to EET from the thiophene segments apart from the C60 moiety.  相似文献   

4.
We report a model calculation of the transport of a local (site) excitation in a doped molecular crystal containing one impurity. We do not consider the impurity as a direct trap for electronic excitations (zero trap depth) but assume that exciton-phonon interaction is exclusively given by the coupling of excitons with the vibrational displacement of the impurity. The dynamical problem is solved by using a time-dependent effective potential consisting of equilibrium average exciton-phonon interaction and fluctuations around this average. Two correlation functions are computed using the slow phonon limit and assuming that the temperature of the system is 300 K. Transmission of the excitation energy over a distance of eight spacings takes place, electronically, within a few picoseconds. With the exciton-phonon interaction switched on, calculated correlation functions diminish very rapidly with increasing time, indicating that an irreversible transfer of excitonic energy to the thermal bath takes place. Thus transmission of the excitation energy over such a distance (and without a high rate of trapping) is not an efficient process.  相似文献   

5.
The antenna behavior of rhodamine 6G and methylene blue loaded novel host supramolecular frameworks is investigated. The geometrical constraints of these supramolecular hosts allows the cationic dye molecules encapsulating within the parallel channels to form novel host-guest systems. The cationic dyes are close together that self-quenching of electronic excitation energy can occur. The excitation energy transfer occurs from rhodamine 6G as a donor (D) to methylene blue as an acceptor (A) within supramolecular systems filled with a mixture of both dyes.  相似文献   

6.
The concept of the ensemble Kohn-Sham hardness is introduced. It is shown that the first excitation energy can be given by the Kohn-Sham hardness (i.e. the energy difference of the ground-state lowest unoccupied and highest occupied levels) plus an extra term coming from the partial derivative of the ensemble exchange-correlation energy with respect to the weighting factorw in the limitw → 0. It is proposed that the first excitation energy can be used as a reactivity index instead of the hardness.  相似文献   

7.
This paper is a review (with a few original additions) on the radiative transport and collisional transfer of energy in laser-excited cesium vapors in the presence of argon or helium. Narrow-band excitation of lines with Lorentz, Doppler and Voigt profiles is studied in order to calculate effective rates for pumping of spectral lines with profiles comprising inhomogeneous broadening components. The radiative transport of excitation energy is considered, and a new, simple and robust, but accurate theoretical method for quantitative treatment of radiation trapping in relatively optically thin media is presented. Furthermore, comprehensive lists of experimental values for the excitation energy transfer cross-sections related to thermal collisions in Cs–Ar and Cs–He mixtures are given. Within the collected cross-section data sets, specific regularities with respect to the energy defect, as well as the temperature, are discerned. A particular emphasis is put on the radiative and collisional processes important for the optimization of resonance–fluorescence imaging atomic filters based on Cs–noble gas systems.  相似文献   

8.
This paper presents a quantum-mechanical study of the intramolecular excitation energy transfer (EET) coupling in naphthalene-bridge-naphthalene systems in gas phase and in solution. ZINDO and TDDFT response schemes are compared using both an exact and an approximate solution. The approximate solution based on a perturbative approach uses the single chromophore properties to reconstruct the real system coupling thus neglecting possible through-bond effects which conversely are accounted for in the exact solution. The comparison of the results of the two approaches with the experiments allows a detailed analysis of the relative importance of through-bond and through-space effects as well as a more complete understanding of the modifications in the EET coupling with the size of the system, the chromophore-chromophore distance, and solvation.  相似文献   

9.
The difference between the excitation energies and corresponding orbital energy gaps, the exciton binding energy, is investigated based on time‐dependent (TD) density functional theory (DFT) for long‐chain systems: all‐trans polyacetylenes and linear oligoacenes. The optimized geometries of these systems indicate that bond length alternations significantly depend on long‐range exchange interactions. In TDDFT formalism, the exciton binding energy comes from the two‐electron interactions between occupied and unoccupied orbitals through the Coulomb‐exchange‐correlation integral kernels. TDDFT calculations show that the exciton binding energy is significant when long‐range exchange interactions are involved. Spin‐flip (SF) TDDFT calculations are then carried out to clarify double‐excitation effects in these excitation energies. The calculated SF‐TDDFT results indicate that double‐excitation effects significantly contribute to the excitations of long‐chain systems. The discrepancies between the vertical ionization potential minus electron affinity (IP–EA) values and the HOMO–LUMO excitation energies are also evaluated for the infinitely long polyacetylene and oligoacene using the least‐square fits to estimate the exciton binding energy of infinitely long systems. It is found that long‐range exchange interactions are required to give the exciton binding energy of the infinitely long systems. Consequently, it is concluded that long‐range exchange interactions neglected in many DFT calculations play a crucial role in the exciton binding energies of long‐chain systems, while double‐excitation correlation effects are also significant to hold the energy balance of the excitations. © 2016 Wiley Periodicals, Inc.  相似文献   

10.
The general kinetic equation for two-component chemical systems is analyzed. It is shown that the positions of steady states in concentration spaces can be detected by a qualitative analysis of the chemical mechanism.
. , .
  相似文献   

11.
The phosphorylation of histidine is the first step in many signal transduction cascades in bacteria, yeast and higher plants. The transfer of a very reactive phosphoryl group from phosphorylated histidine kinase to an acceptor is an essential step in many cellular signaling responses.  相似文献   

12.
β-modification and multi-component systems ofβ-polypropylene were prepared both under laboratory and processing conditions. Characteristic features of crystallization, melting, and annealing ofβ-PP are summarized. The very distinct memory effect in the melting and annealing ofβ-PP is also presented. The existence of a lower and an upper limit temperature ofβ-PP formation is demonstrated. The structural stability and the orientation-inducedβα-recrystallization ofβ-PP are analyzed. Preparation and properties of polymer blends and filled composites fromβ-PP are introduced, too.  相似文献   

13.
This Minireview summarizes several recent experiments clouding over prevailing theoretical understanding of charge transport behaviors in electrochemical systems; they are nonlinear concentration dependence of ionic conductivity, ultra-long Debye length in ionic liquids, nonmonotonic double layer charging behavior, and anomalous increase in area specific capacitance with decreasing nanopore size. Theoretical activities reveal that nanoconfinement and high concentration exert strong influence on charge distribution and transport via strong ion-ion correlations and ion-wall interactions. By exemplifying where and why classical theories of charge transport fail, we defy the popular point of view that theoretical electrochemistry is well-established and we are left with applications of these theories only.  相似文献   

14.
Effect of diffusion on excitation energy transfer and migration in a dye pair sodium fluorescein (donor) and Rhodamine-6G (acceptor) has been studied for different viscosities by both steady state and time domain fluorescence spectroscopic measurements. The donor-donor interaction appears to be weaker as compared to donor-acceptor interaction and thus favors direct Forster-type energy transfer. Interestingly, at low viscosity (water in this case) transfer appears to be controlled by material diffusion/energy migration. Further, acceptor dynamics reveals the fact that direct Forster transfer dominates in viscous media.  相似文献   

15.
A spectroscopic investigation of the vibrational dynamics of water in a geometrically confined environment is presented. Reverse micelles of the ternary microemulsion H2O/AOT/n-octane (AOT = bis-2-ethylhexyl sulfosuccinate or aerosol-OT) with diameters ranging from 1 to 10 nm are used as a model system for nanoscopic water droplets surrounded by a soft-matter boundary. Femtosecond nonlinear infrared spectroscopy in the OH-stretching region of H2O fully confirms the core/shell model, in which the entrapped water molecules partition onto two molecular subensembles: a bulk-like water core and a hydration layer near the ionic surfactant headgroups. These two distinct water species display different relaxation kinetics, as they do not exchange vibrational energy. The observed spectrotemporal ultrafast response exhibits a local character, indicating that the spatial confinement influences approximately one molecular layer located near the water-amphiphile boundary. The core of the encapsulated water droplet is similar in its spectroscopic properties to the bulk phase of liquid water, i.e., it does not display any true confinement effects such as droplet-size-dependent vibrational lifetimes or rotational correlation times. Unlike in bulk water, no intermolecular transfer of OH-stretching quanta occurs among the interfacial water molecules or from the hydration shell to the bulk-like core, indicating that the hydrogen bond network near the H2O/AOT interface is strongly disrupted.  相似文献   

16.
Reverse micelles (or w/o microemulsions) have found wide applications in enzymology, protein chemistry and other areas assisting in a variety of biotransformations. Being considered as an individual ‘nanobioreactors’ these systems allow one to reveal or to add new properties to biocatalysts.  相似文献   

17.
Previously, we developed a unified theory of the excitation energy transfer (EET) in dimers, which is applicable to all of the cases of excitonic coupling strength (Kimura, A.; Kakitani, T.; Yamato, T. J. Phys. Chem. B 2000, 104, 9276). This theory was formulated only for the forward reaction of the EET. In the present paper, we advanced this theory so that it might include the backward reaction of the EET as well as the forward reaction. This new theory is formulated on the basis of the generalized master equation (GME), without using physically unclear assumptions. Comparing the present result with the previous one, we find that the excitonic coupling strengths of criteria between exciton and partial exciton and between hot transfer and hopping (F?rster) mechanisms are reduced by a factor of 2. The critical coherency eta c is also reduced significantly.  相似文献   

18.
The inductive-resonant mechanism of electronic energy degradation is proposed and proved for rare earth ions, transition metal ions and simple molecules (NO?2) in solutions. The interaction of two oscillators is considered, that is the vibronic interaction corresponding to the radiation spectrum of an excited ion or molecular and the vibrational spectrum corresponding to the excitation of high frequency vibrations of the solvent. The calculation of the energy degradation rare constant (kdegr.) by Förster's formula is shown to give kdegr. values of the same order as the experiment. Such a treatment can quantitatively explain all experimental regularities of the degradation process, for instance, the dependence of kdegr. on the distance from the electronic excitation centre to the nearest high frequency vibration gravity centre. It is shown that the suggested mechanism corretly explains the deuteration effect, the dependence of kdegr. on ΔE (energy gap) and the variation of this dependence for differenct classes of compounds. The possibility of proving the validity of the suggested model for the case of complex organic molecules is discussed.  相似文献   

19.
From theoretical considerations, three types of coherent excitations of biological systems have been suggested: (i) vibrations of membranes and of proteins with frequencies above 109 Hz; (ii) near static excitation of a highly polar metastable state; and (iii) low frequency periodic enzyme reactions. Recent experimental evidence is discussed.  相似文献   

20.
The nature of the interactions which promote interchromophore electronic excitation transfer are examined. They are partitioned into direct and relayed components, where direct electronic coupling takes the form of a dipole—dipole interaction at large separations. Factors which modify this interaction at short to intermediate separations are discussed (with particular reference to aromatic polymer systems). The direct interaction is partitioned into coulombic, exchange and penetration terms; the significance of the penetration interaction at close separation (proposed recently for the first time) is elaborated upon here. The relayed interaction involves mediation of all these interactions over lage direct separations via intervening moieties. It is demonstrated, using a model poly(acenaphtylene) dyad as an example, that relayed interactions, mediated via the σ bonds connecting two chromophores, are capable of increasing substantially the rate of electronic excitation transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号