首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary An HPLC method has been developed for the quantification of rantidine in plasma for pharmacokinetic studies. Metoclopramide was used as internal standard. The method uses a simple and rapid sample clean-up procedure involving single-step extraction with organic solvent to extract ranitidine from plasma. After evaporation and reconstitution the samples are chromatographed on a 250 mm×4 mm base-stable reversed-phase column with 0.05 M ammonium acetate-acetonitrile, 75∶25 (v/v) as mobile phase and UV detection at 313 nm. The calibration graph was linear for quantities of ranitidine between 10 and 2000 ng mL−1. Intra- and inter-dayCV did not exceed 11.64%. The quantitation limit was 10 ng mL−1 for human plasma. The applicability of this method for pharmacokinetic studies of ranitidine after oral administration are described. Approximately 90 samples can be processed in 24 h.  相似文献   

2.
A new methodology was developed for analysis of aldehydes and ketones in fuel ethanol by high-performance liquid chromatography (HPLC) coupled to electrochemical detection. The electrochemical oxidation of 5-hydroxymethylfurfural, 2-furfuraldehyde, butyraldehyde, acetone and methyl ethyl ketone derivatized with 2,4-dinitrophenylhydrazine (DNPH) at glassy carbon electrode present a well defined wave at +0.94 V; +0.99 V; +1.29 V; +1.15 V and +1.18 V, respectively which are the basis for its determination on electrochemical detector. The carbonyl compounds derivatized were separated by a reverse-phase column under isocratic conditions with a mobile phase containing a binary mixture of methanol / LiClO4(aq) at a concentration of 1.0 × 10−3 mol L−1 (80:20 v/v) and a flow-rate of 1.1mL min−1 . The optimum potential for the electrochemical detection of aldehydes-DNPH and ketones-DNPH was +1.0 V vs. Ag/AgCl. The analytical curve of aldehydes-DNPH and ketones-DNPH presented linearity over the range 5.0 to 400.0 ng mL−1, with detection limits of 1.7 to 2.0 ng mL−1 and quantification limits from 5.0 to 6.2 ng mL−1, using injection volume of 20 μL. The proposed methodology was simple, low time-consuming (15 min/analysis) and presented analytical recovery higher than 95%.  相似文献   

3.
Summary A sensitive liquid chromatographic assay for the quantitative determination of the opioid analgesic tramadol and its active metabolite is described. Fluconazole was used as internal standard. The assay involved a singletert-butyl methyl ether extraction and LC analysis with fluorescence detection. Chromatography was at 30°C pumping an isocratic mobile phase of acetonitrile-water (19∶81, v/v) containing 0.06M NaH2PO4 and 0.05M triethylamine, adjusted to pH 7.90, at 1 mL min−1 through a reversed-phase, 250×4 mm base-stable column. The limit of quantitation of tramadol and its active metabolite was 1 ng mL−1, only 0.5 mL plasma sample was required for the determination. The calibration curve was linear from 1–1000 ng mL−1. Intra and inter-day precision (C.V.) did not exceed 10%. Mean recoveries of 96.38% for tramadol and 96.62% forO-demethyltramadol with CVs of 0.43% and 1.46% were obtained. Applicability of the method was demonstrated by a pharmacokinetic study on normal volunteers who received 100 mg tramadol intravenously.  相似文献   

4.
Summary A sensitive HPLC method has been developed for determination of ofloxacin (OFL) in biological fluids. Sample preparation was performed by adding phosphate buffer (pH 7.4, 0.1m) then extraction with trichloromethane. OFL and the internal standard, sarafloxacin (SAR), were separated on a reversed-phase column with aqueous phosphate solution-acetonitrile, 80∶20, as mobile phase. The fluorescence of the column effluent was monitored at λex 338 and λem 425 nm. The retention times were 2.66 and 4.24 min for OFL and SAR, respectively, and the detection and quantitation limits were 8 and 15 ng mL−1, respectively. Plots of response against ofloxacin concentration were linear in the range 8 to 2000 ng mL−1. Recovery was 92.9% for OFL.  相似文献   

5.
Isocratic reversed phase high performance liquid chromatographic (HPLC) method using RP C18 column was developed for simultaneous determination of the curcuminoids. Mobile phase consisted of acetonitrile:0.1% trifluro-acetic acid (50:50) and flow rate was 1.5 mL min−1 and elution was monitored at 420 nm. Validation in selected conditions showed that the chosen method is sensitive, selective, precise and reproducible with linear response of detector for the simultaneous determination of curcumin (C), demethoxycurcumin (DMC) and bis-demethoxycurcumin (BDMC). The limits of detection were 27.99, 31.91 and 21.81 ng mL−1 for C, DMC and BDMC, respectively. Limits of quantitation for C, DMC and BDMC, were 84.84, 96.72 and 66.10 ng mL−1, respectively. Linear range was form 100 to 600 ng mL−1. The mean ± SD percent recoveries of curcuminoids were 99.87 ± 0.34, 100.09 ± 0.48 and 100.10 ± 0.60% of C, DMC and BDMC, respectively. Further, the method was used for quantitation of curcuminoids from turmeric rhizome.  相似文献   

6.
A sensitive and rapid liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) method has been developed and validated for the determination of mizolastine in human plasma using dipyridamole as the internal standard (I.S.). Plasma samples were simply pretreated with methanol for deproteinization. Chromatographic separation was performed on an Agilent Zorbax C18 column with a mobile phase of 10 mM ammonium acetate buffer containing 0.1% formic acid–methanol (20:80, v/v) at a flow rate of 1 mL min−1. The electrospray ionization (ESI) interface was employed in a single quadrupole mass spectrometer. The analytes were protonated in the positive ESI interface and detected in single ion monitoring (SIM) mode. Chromatographic separation was achieved in less than 3.5 min. The linearity was established over the range of 0.5–600 ng mL−1. The lower limited of quantification (LLOQ) of the method was 0.5 ng mL−1. The intra- and inter-run standard deviations were both less than 11.2%. The method was applied to study the pharmacokinetics of the mizolastine sustained-release tablets in healthy volunteers.  相似文献   

7.
Summary An HPLC method was developed for determination of amoxicillin, penicillin G, penicillin V, ampicillin, oxacillin, cloxacillin, nafcillin and dicloxacillin in serum from pigs and cattle. Serum was cleaned up by solid-phase extraction (SPE), ultra-filtered and derivatised. The method was linear in the range tested up to 2000 ng mL−1 of individual penicillins in serum. Limits of detection were 11–14 ng mL−1. Mean recoveries were 90–103% in the range 20–2000 ng mL−1. The relative repeatability, standard deviation was <10% at 20 ng mL−1 level and <6% in the range 100–2000 ng mL−1.  相似文献   

8.
Summary A high-performance liquid chromatographic method with amperometric detection has been developed for the determination of levels of clozapine (CLZ) and its active metabolite N-desmethylclozapine (DMC) in human plasma. The analysis was performed on a 5 μm C8 reversed phase column (150×4.6 mm i.d.), with acetonitrile-phosphate buffer (pH 3.5), as the mobile phase. The detection voltage was +800 mV and the cell and column temperature were 50°C. Linear responses were obtained between 2 ng mL−1 and 100 ng mL−1. Absolute recovery for both clozapine and desmethylclozapine exceeded 88% and the detection limit was 1 ng mL−1. Repeatability, intermediate precision and accuracy were satisfactory. The method, which is rapid, sensitive and selective, has been applied to therapeutic drug monitoring in schizophrenic patients following administration of Leponex? tablets. In 21 patients in steady state at a mean daily clozapine dosage of 358 mg (ranging from 150 to 500 mg day−1), clozapine levels averaged 379 ng mL−1 (ranging from 102 to 818 ng mL−1) and DMC levels averaged 233 ng mL−1 (ranging from 70 to 540 ng mL−1). The method requires only a very small amount of plasma (100 μL), and thus it is suitable for pharmacokinetic studies, as well as for therapeutic drug monitoring.  相似文献   

9.
Summary A sensitive HPLC method with marbofloxacin (MAR) as internal standard and fluorescence detection is described for the analysis of ofloxacin (OFL) enantiomers in plasma samples. Plasma samples were prepared by adding phosphate buffer (pH 7.4, 0.1m), then extracted with trichloromethane.S-OFL,R-OFL, and the internal standard were separated on a reversed-phase column with water-methanol, 85.5∶14.5, as mobile phase. The concentrations ofS-OFL andR-OFL eluting from the column (retention times 7.5 and 8.7 min, respectively) were monitored by fluorescence detection withλ ex = 331 andλ em = 488 nm. The detection and quantitation limits were 10 and 20 ng mL−1, respectively, forS-OFL and 11 and 21 ng mL−1 forR-OFL. Response was linearly related to concentration in the range 10 to 2500 ng mL−1. Recovery was close to 93% for both compounds. The method was applied to determination of the enantiomers of OFL in plasma samples collected during pharmacokinetic studies.  相似文献   

10.
Summary A rapid and accurate HPLC method is described for the simultaneous determination of acetaminophen, dextromethorphen hydrobromide and pseudoephedrine hydrochloride in a new cold formulation. Chromatographic separation of the three pharmaceuticals was performed on a Hypersil CN column (150×5.0 mm, 5 μm) with a mobile phase mixture of an ion-pairing solution, methanol and acetonitrile (25:57:18, v/v), at a flow rate of 1.0 mL min−1, with detection at 220 nm. Separation was complete in less than 10 min. The method was validated for linearity, accuracy, precision, limit of quantitation and robustness. Linearity, accuracy, and precision were found to be acceptable over the ranges of 2.06∼20.6 μg·mL−1 for acetaminophen, 0.202∼2.02 mg·mL−1 for pseudoephedrine hydrochloride and 0.042∼1.06 mg·mL−1 for dextromethorphen hydrobromide.  相似文献   

11.
Summary A sensitive method was developed for the determination of temazepam in plasma using capillary gas chromatography. After the extraction into dichloromethane-pentane (1∶1), temazepam was quantitated as its O-trimethylsilyl derivative on a capillary column with a63Ni electron capture detector using prazepam as internal standard. The detector response was found to be linear in the concentration range 0.031 to 8 μg mL−1. The detection limit was about 3.5 ng mL−1. The intraday and inter-day coefficients of variation were below 9%. The method was used to determine the pharmacokinetic profile of temazepam in rats after intravenous administration.  相似文献   

12.
A fast and sensitive liquid chromatography–mass spectrometry method was developed for the determination of ursolic acid (UA) in rat plasma and tissues. Glycyrrhetinic acid was used as the internal standard (IS). Chromatographic separation was performed on a 3.5 μm Zorbax SB-C18 column (30 mm × 2.1 mm) with a mobile phase consisting of methanol and aqueous 10 mM ammonium acetate using gradient elution. Quantification was performed by selected ion monitoring with (m/z) 455 for UA and (m/z) 469 for the IS. The method was validated in the concentration range of 2.5 − 1470 ng mL−1 for plasma samples and 20 − 11760 ng g−1 for tissue homogenates. The intra- and inter-day assay of precision in plasma and tissues ranged from 1.6% to 7.1% and 3.7% to 9.0%, respectively, and the intra- and inter-day assay accuracy was 84.2 − 106.9% and 82.1 − 108.1%, respectively. Recoveries in plasma and tissues ranged from 83.2% to 106.2%. The limits of detections were 0.5 ng mL−1 or 4.0 ng g−1. The recoveries for all samples were >90%, except for liver, which indicated that ursolic acid may metabolize in liver. The main pharmacokinetic parameters obtained were T max = 0.42 ± 0.11 h, C max = 1.10 ± 0.31 μg mL−1, AUC = 1.45 ± 0.21 μg h mL−1 and K a = 5.64 ± 1.89 h−1. The concentrations of UA in rat lung, spleen, liver, heart, and cerebellum were studied for the first time. This method is validated and could be applicable to the investigation of the pharmacokinetics and tissue distribution of UA in rats.  相似文献   

13.
Summary Lopinavir is a new specific and potent HIV-1 protease inhibitor. A rapid high-performance liquid chromatographic method using UV detection, has been developed and validated for the analysis of lopinavir in plasma. This involved a single liquid-solid extraction on an OASIS? HLB column in the presence of an internal standard. Separation was achieved on a Xterra?, C8 (150×3.9 mm I.D.) column with a mobile phase consisting of acetonitrile and water (41∶59, v/v). The detection wavelength was 210 nm. The assay was linear from 0.187 to 10.0 μg.mL−1 and the limit of quantification was 0.187 μg.mL−1. Mean recovery was ranged from 90.7% to 97.8% for lopinavir and 97.1% for the internal standard. Day to day precision and accuracy were less than 9.6% and 7.3% respectively. This rapid and simple method can readily be used for drug monitoring of lopinavir, in HIV-1 infected patients.  相似文献   

14.
Summary Gas chromatography with electron capture detection (GC-ECD) for the analysis of methylmercury choloride (MMC) using a packed column and a capillary column has been investigated. The columns were 2% silicone OV-227 Uniport HP glass column and a DB-17 capillary column, each pretreated by about ten injections of HBr-methanol solution. MMC was separated as a sharp peak by the HBr-teated column and determined directly by ECD without derivatisation. The mass spectrum of MMC indicated that halide exchange from chloride to bromide proceeded during separation. The minimum detectable concentrations were approximately 5 ng mL−1 on the packed column, and 2 ng mL−1 on the capillary. Calibration curves showed good linearity between 5–200 ng mL−1 for the packed column, and between 2–200 ng mL−1 for the capillary. Relative standard deviations of peak areas were 0.95% for the packed column and 0.43% for the capillary at the level of 100 ng mL−1 in both cases. The column treatment technique was applicable to determination of methylmercury in fish samples.  相似文献   

15.
Summary A method was developed for the separation and quantification of the warfare nerve agent sarin (O-isopropylmethylphosphonoflouridate), its metabolite methylphosphonic acid, the anti nerve agent drug pyridostigmine bromide (PB;3-dimethylaminocarbonyloxy-N-methyl pyridinium bromide) and its metaboliteN-methyl-3-hydroxypyridinium bromide in rat plasma and urine. The method involved using solid phase extraction and high performance liquid chromatography (HPLC) with reversed phase C18 column, and UV detection at 280 nm. The compounds were separated using gradient of 1% to 55% acetonitrile in 0.1% triflouroacetic acid water solution (pH 3.20) at flow rate of 0.9 ml/min in a period of 15 min. The retention times ranged from 4.4–12.1 min. The limits of detection were 50 ng mL−1 for PB andN-methyl-3-hydroxypyridinium bromide, and 10 μg mL−1 for sarin and methylphosphonic acid, while limits of quantitation were between 100 ng mL−1–12 μg mL−1. Average percentage recovery of five spiked samples from plasma were 84.6±8.4, 86.5±9.0, 76.4±8.5, 81.3±8.2, and from urine 78.5±7.9, 76.4±7.8, 74.4±8.4, 80.6±6.8 for sarin, methylphosphonic acid, pyridostigmine bromide andN-methyl-3-hydroxypyridinium bromide, respectively. This method was applied to analyze the above chemicals and metabolites following combined administration in rats.  相似文献   

16.
A simple reversed-phase high-performance liquid chromatographic (HPLC) method has been developed for the simultaneous determination of the antiepileptic drugs (AEDs) zonisamide (ZNS), primidone (PRI), lamotrigine (LTG), phenobarbital (PB), phenytoin (PHT), oxcarbazepine (OXC), and carbamazepine (CBZ) and two of their active metabolites, monohydroxycarbamazepine (MHD) and carbamazepine 10,11-epoxide (CBZE) in human plasma. Plasma (100 μL) was pretreated by deproteinization with 300 μL methanol containing 20 μg mL−1 propranolol hydrochloride as internal standard. HPLC was performed on a C8 column (4.6 mm × 250 mm; particle size 5 μm) with methanol–acetonitrile–0.1% trifluoroacetic acid, 235:120:645 (v/v), as mobile phase at a flow rate of 1.5 mL min−1. ZNS, OXC, and CBZ were monitored by UV detection at 235 nm, and PRI, LTG, MHD, PB, PHT, and CBZE by UV detection at 215 nm. Relationships between response and concentration were linear over the concentration ranges 1–80 μg mL−1 for ZNS, 5–50 μg mL−1 for PRI, 1–25 μg mL−1 for LTG, 1–50 μg mL−1 for MHD, 5–100 μg mL−1 for PB, 1–10 μg mL−1 for CBZE, 0.5–25 μg mL−1 for OXC, 1–50 μg mL−1 for PHT, and 1–25 μg mL−1 for CBZ. Intra-day and inter-day reproducibility were adequate (coefficients of variation were ≤11.6%) and absolute recovery ranged from 95.2 ± 6.13 to 107.7 ± 7.76% for all the analytes; for the IS recovery was 98.69 ± 1.12%. The method was proved to be accurate, reproducible, convenient, and suitable for therapeutic monitoring of the nine analytes.  相似文献   

17.
A convenient, selective and sensitive liquid chromatographic-electrospary ionization mass spectrometry (LC–ESI–MS) method was developed and validated to determine lovastatin in human plasma. The analyte was extracted from human plasma samples by typical liquid–liquid extraction, separated on a C18 column by using the mobile phase consisting of water–methanol (13:87, v/v). Simvastatin was used as the internal standard (IS). The method was linear within the range of 0.1–20 ng mL−1. The lower limit of quantification (LLOQ) was 0.1 ng mL−1. The intra- and inter-run precision, calculated from quality control (QC) samples was less than 10.2%. The accuracy as determined from QC samples was in the range of 99.3–102.9% for the analyte. The mean recoveries for lovastatin and IS were 84.8 and 88.0%, respectively. The method was successfully applied for evaluation of the pharmacokinetic of lovastatin in healthy volunteers.  相似文献   

18.
Summary Stability indicating high performance liquid chromatography methods have been developed for the assay of meropenem in combination with either dopamine (A), aminophylline (B), metoclopramide (C) or ranitidine (D) in intravenous fluid mixtures. Separations B, C and D were performed on a polar endcapped ODS column (150×2 mm) with aqueous, pH 3.0—acetonitrile (89∶11, 88∶12, and 92∶8) eluent and detection at 270, 290, 317 nm respectively. Meropenem was linear over the concentration ranges 126.88–507.50, 131.25–525, and 131.25–525 gmg mL−1. Aminophylline, metoclopramide and ranitidine were linear over the concentration ranges 13–52, 37.5–150, and 25–100 μg mL−1. Separation A was performed on a conventional ODS column (150×2.1 mm) with aqueous, pH 3.0—acetonitrile (85∶15) eluent and detection at 280 nm. Meropenem and dopamine were linear in the 61.25–245 and 10–40 μg mL−1 ranges, respectively. Accuracy and precision for all methods were 0.20–3.30% and 0.10–1.58%, respectively. Accelerated stability studies have been carried out on each drug by exposure to acid, base, H2O2, and heat for different time periods.  相似文献   

19.
An accurate, sensitive and least time consuming reverse phase high performance liquid chromatographic (RP‐HPLC) method for the estimation of captopril in the presence of non steroidal anti‐inflammatory drugs in formulation and human serum has been developed and validated. Chromatographic separation was conducted on prepacked Purospher star C18 (5 μm, 25 × 0.46 cm) column at room temperature using methanol:water (80:20 v/v) as a mobile phase, pH adjusted at 2.8 with o‐phosphoric acid and at a flow rate of 1.0 mL min−1, while UV detection was performed at 227 nm. The limit of detection and quantification for captopril were 1 and 0.35 ng mL−1, while that for (NSAID's) i.e. flurbiprofen, ibuprofen, diclofenac sodium and mefenamic acid LOD were 0.2, 1, 2 and 0.4 ng mL−1 respectively and LOQ were 0.9, 2.9, 8 and 1 ng mL−1 Analytical recovery was > 98.1%. The method used for the quantitative analysis of commonly administered non steroidal anti‐inflammatory drugs (NSAID's) i.e. ibuprofen, flurbiprofen, diclofenac sodium and mefenamic acid alone or in combination with captopril from API (active pharmaceutical ingredients), dosage formulations and in human serum. The established method is rapid (RT < 12 min), accurate (recovery > 98.1%), selective (no interference of excepients and other commonly used drugs and food) and sensitive (LOQ 3.5 ng mL;‐1) and reproducible (SD ± 0.003).  相似文献   

20.
Radix Scrophulariae (Xuanshen) is one of the famous Chinese herbal medicines widely used to treat rheumatism, tussis, pharyngalgia, arthritis, constipation, and conjunctival congestion. Harpagoside and cinnamic acid are the main bioactive components of Xuanshen. The purpose of this study was to develop an HPLC–UV method for simultaneous determination of harpagoside and cinnamic acid in rat plasma and investigate pharmacokinetic parameters of harpagoside and cinnamic acid after oral administration of Xuanshen extract (760 mg kg−1). After addition of syringin as internal standard, the analytes were isolated from plasma by liquid–liquid extraction. Separation was achieved on a Kromasil C18 column, and detection was by UV absorption at 272 nm. The described assay was validated in terms of linearity, accuracy, precision, recovery, and limit of quantification according to the FDA validation guidelines. Calibration curves for both analytes were linear with the coefficient of variation (r) for both was greater than 0.999. Accuracy for harpagoside and cinnamic acid ranged from 100.7–103.5% and 96.9–102.9%, respectively, and precision for both analytes were less than 8.5%. The main pharmacokinetic parameters found for harpagoside and cinnamic acid after oral infusion of Xuanshen extract were as follows: C max 1488.7 ± 205.9 and 556.8 ± 94.2 ng mL−1, T max 2.09 ± 0.31 and (1.48 ± 0.14 h, AUC0–24 10336.4 ± 1426.8 and 3653.1 ± 456.4 ng h mL−1, 11276.8 ± 1321.4 and 3704.5 ± 398.8 ng h mL−1, and t 1/2 4.9 ± 1.3 and 2.5 ± 0.9 h, respectively. These results indicated that the proposed method is simple, selective, and feasible for pharmacokinetic study of Radix Scrophulariae extract in rats. Figure Radix Scrophulariae  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号