首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Summary The determination of selected pesticides and phenols in Portuguese river water samples was carried out from April to September, 1999. The method involved 200 mL samples taken by offline, solid phase extraction by OASIS polymeric cartridges followed by liquid chromatography-atmospheric pressure, chemical ionization-mass spectrometry (LC-APCI-MS). Recoveries of pesticides were 50–96% and 72–120% for the Platform and HP 1100 instruments, respectively. Chlorophenols gave recoveries of 60–91%. Triazines and transformation products like desethylatrazine (DEA) and desisopropylatrazine (DIA) and compounds such as diuron and chlorophenols were positively identified by LC-APCI-MS. The levels detected of the different compounds varied from 0.01–2.61 μg L−1, the most frequently detected compounds being, atrazine, simazine, terbuthylazine, alachlor, metolachlor, Irgarol, diuron, 2,4,6-trichlorophenol, desisopropylatrazine and desethylatrazine.  相似文献   

2.
Chloro-s-triazines are a class of compounds comprising atrazine, simazine, propazine, cyanazine and their chlorinated metabolites. The US Environmental Protection Agency (EPA) has determined that selected chloro-s-triazines--atrazine, simazine, propazine, deethylatrazine, deisopropylatrazine, and didealkylatrazine--have a common mode of toxicity related to endocrine disruption. In this paper, a dual-resin solid-phase extraction (SPE) gas chromatography-mass spectrometry (GC-MS) method is reported that provides for each of these chloro-s-triazines including the polar metabolite, didealkylatrazine. The method utilizes deuterated internal standards for quantitation and terbuthylazine as a recovery standard. The limit-of-detection was 0.01 microg/L for simazine, deethylatrazine, deisopropylatrazine and didealkylatrazine, and 0.02 microg/L for atrazine and propazine in surface water. Mean recoveries for 0.5 and 3.0 microg/L spikes for atrazine, simazine, propazine, deethylatrazine, deisopropylatrazine and didealkylatrazine were 94, 104, 103, 110, 108 and 102%, respectively, in surface water. The method was also validated by matrix spikes into fourteen different raw and treated natural surface waters. This method is useful for monitoring "total chloro-s-triazines" in both raw and treated drinking waters.  相似文献   

3.
An analytical method combining disk solid-phase extraction with micellar electrokinetic chromatography has been developed for the determination of atrazine, simazine, hydroxyatrazine, deisopropylatrazine, deethylatrazine, propazine and prometryn in water samples. The influence of the buffer and sodium dodecyl sulfate (SDS) concentration, pH and organic modifier on the separation has been studied. Baseline separation of the seven triazines was achieved under the following conditions: 10 mM borate buffer, 60 mM SDS, 20% methanol and pH 9.2. C18-bonded silica and poly(styrene-divinylbenzene) (PS-DVB) disks were evaluated for solid-phase extraction of the selected pesticides (11 of water sample). Using two PS-DVB disks, quantitative recoveries were obtained for all pesticides tested. The method was successfully applied for the determination of the seven triazines in drinking and well water at the 0.1 microg l(-1) and 0.5 microg l(-1) concentration levels, respectively. The detection limits for these analytes using the proposed analytical method were within the 0.02-0.06 microg l(-1) range in drinking water and the 0.06-0.30 microg l(-1) range in well water.  相似文献   

4.
Residues of the herbicides simazine, metribuzin, metolachlor, trifluralin, atrazine, and two metabolites of atrazine, deisopropylatrazine (DIA) and deethylatrazine (DEA), are surveyed in the surface and groundwater of the Primavera do Leste region, Mato Grosso, Brazil during September and December 1998 and April 1999. Different water source sampling stations of groundwater (irrigation water well, drinking water well, and water hole) and surface water (dam and river) are set up based on agricultural land use. A solid-phase extraction procedure followed by gas chromatography-nitrogen-phosphorus detection is used for the determination of these compounds. All compounds are detected at least once in water samples. A temporal trend of pesticide contamination is observed, with the highest contamination frequency occurring in December during the main application season. Metribuzin shows the highest individual detection frequencies throughout the monitoring period, followed by metolachlor, simazine, and DEA. The maximum mean concentrations of pesticides in this study are in the range from 0.14 to 1.7 microg/L. We deduct that the contamination of water resources is predominantly caused by non-point pollution of pesticides used in intensive cash-crop cultures of the Cerrado area. Therefore, a continuous monitoring of pesticide concentrations in water resources of this tropical region is necessary to detect the longer term contamination trends and developing health risks.  相似文献   

5.
A method was developed for solid-phase extraction of two chlorotriazine herbicide metabolites, deethylatrazine (DEA) and deisopropylatrazine (DIA), from aqueous samples. Two C18 phases in cartridge format were compared and recoveries were found to be highly sensitive to sorbent amount, sample volume and presence of parent compounds. Recoveries were significantly improved using a partially non-endcapped C18 phase compared to the normal C18 phase, particularly for DIA, apparently due to polar interactions. Combinations of sample volume and sorbent amount were tested using deionized water to determine an optimal combination of 200 ml and 1.0 g, respectively. Recoveries from a variety of river, stream, runoff and ground waters averaged 105–116% and 109–117% at concentrations of 0.5–1.0 ng/ml for DIA and DEA, respectively, with minimum detection limits of 0.05 ng/ml. Other pesticides tested also have acceptable recoveries using this method.  相似文献   

6.
Gas chromatography-mass spectrometry (GC-MS) with electron impact (EI), positive-ion chemical ionization (PCI) and negative-ion chemical ionization (NCI) were applied as confirmatory techniques for residue analysis of chlorotriazine pesticides, their degradation products and organophosphorus pesticides in soil samples. Clean-up was effected using a Florisil column with subsequent analysis by GC with a nitrogen-phosphorus detector. GC-MS with the EI mode of operation is the common mode of confirmation for all the pesticides. Further confirmation by either GC-MS with PCI and NCI for chlorotriazines and organophosphorus pesticides, respectively, is recommended. The method was applied to the determination of residue levels of atrazine, deethylatrazine, deisopropylatrazine, simazine, fenitrothion and tetrachlorvinphos in several soil samples at levels from 5 ng g?1 to 9 μg g?1.  相似文献   

7.
研制了一种新型固相萃取(SPE)介质,用于同时高效萃取莠去津(ATZ)及其两种毒性代谢产物脱乙基莠去津(DEA)和脱异丙基莠去津(DIA),为全面客观地评价ATZ的水污染状况提供基础.以聚丙烯腈纳米纤维(PAN NFs)膜为基底膜,制备了3种功能化的NFs膜.吸附容量和吸附效率实验结果表明,羧基修饰的PAN NFs(COOH-PAN NFs)膜对3种目标物的静态和动态吸附容量分别为2.00和0.19 mg/g,动态吸附流出率低于30.0%,显著优于其它3种NFs膜,且对极性较大的目标物保留最强,表明其为同时高效吸附ATZ、 DIA和DEA的优势SPE介质,且主要通过羧基基团与目标物之间形成的氢键进行目标物吸附.采用基于COOH-PAN NFs膜的SPE,结合高效液相色谱-二极管阵列检测器(HPLC-DAD),建立了同时检测水样中ATZ、 DIA和DEA的方法,方法回收率为81.4%~120.3%, DIA检出限(LOD, S/N=3)为0.12 ng/mL,DEA和ATZ的检出限为0.09 ng/mL,可应用于实际水样监测.  相似文献   

8.
A new method for the simultaneous determination of antifouling pesticides and some of their byproducts such as dichlofluanid, diuron and its byproducts [demethyldiuron and 1-(3,4-dichlorophenyl)urea], (2-thiocyanomethylthio)ben: zothiazole, chlorothalonil, Sea-nine 211, Irgarol 1051 and one of its byproducts (2-methylthio-4-tert.-butylamino-s-triazine) in seawater was developed. The extraction of these compounds from the filtered seawater samples was performed off-line with different solid-phase extraction sorbents using (I) a 500 mg graphitized carbon black cartridge (ENVI-Carb) and (II) 200 mg polymeric cartridges (LiChrolut EN and Isolute ENV+) and passing 500 ml of the sample through these cartridges. The detection was carried out by reversed-phase high-performance liquid chromatography coupled with atmospheric pressure chemical ionization mass spectrometry both in the negative and positive ion modes. The recovery ranged from 76 to 96% for the whole antifouling group with the ENVI-Carb cartridges and the detection limit was at the part-per-trillion level except for TCMTB. The method utilizing the polymeric cartridge proved to be very useful, time saving and with good recoveries when only Irgarol and its byproduct, Sea-nine 211 and diuron and its byproducts, have to be analyzed. The different cartridges were applied to the analysis of these pesticides in different marinas of the Catalan coast; diuron, dichlofluanid, Sea-nine 211, Irgarol as well as demethyldiuron and the Irgarol byproduct being the must ubiquitous pollutants. Maximum concentration levels were 2-3.5 microg/l of diuron and Sea-nine 211, respectively.  相似文献   

9.
Solid-phase extraction (SPE) with the styrene-divinylbenzene adsorbent LiChrolut EN was investigated for the extraction of the s-triazine herbicides atrazine and terbutylazine, their polar N-dealkylated degradation products deethylatrazine (DEA), deisopropylatrazine (DIA) and deethylterbutylazine (DET) and for the hydrophilic hydroxytriazine degradation products (HTDPs) hydroxyatrazine (HA), hydroxyterbutylazine (HT), deethylhydroxyatrazine (DEHA), deisopropylhydroxyatrazine (DIHA) and deethyldeisopropylhydroxyatrazine (ameline). The optimum pH value for the extraction of the HTDPs from fortified tap water at 2 micrograms/l is 3.0. Recovery values with 200 mg LiChrolut EN are > 80% for HA, HT, DEHA and 30% for DIHA from 200 ml spiked tap and river water. Atrazine, terbutylazine, DEA, DIA and DET are quantitatively extracted by LiChrolut EN. The chlorotriazines are analyzed by GC-MS and the HTDPs by capillary zone electrophoresis (CZE) and micellar electrokinetic capillary chromatography (MECC) with an acetate buffer at pH 4.6 or a sodium borate-sodium dodecyl sulfate buffer at pH 9.3. The combined method of SPE enrichment and CE analysis allows the determination of HTDPs in the low microgram/l range.  相似文献   

10.
气相色谱法分析尿液样品中的阿特拉津及其代谢物   总被引:2,自引:0,他引:2  
建立了尿液样品中阿特拉津(ATZ)及其代谢物脱乙基阿特拉津(DEA)、脱异丙基阿特拉津(DIA)、脱乙基脱异丙基阿特拉津(DEDIA)的气相色谱分析方法。样品经乙酸乙酯萃取、硫酸钠脱水、弗罗里硅土净化、浓缩后用气相色谱-电子俘获检测器分析。对样品萃取时的pH值等条件进行了优化,获得了较好的回收率。方法的检出限分别为DEDIA 0.0025 mg/L,DEA、DIA、ATZ 0.005 mg/L。4种化合物在进样量为0.2~8 ng时与其峰面积呈良好的线性关系。利用该方法对阿特拉津生产厂工人的尿液样品进行了分析,尿液中4种化合物的质量浓度为:DEDIA 0.003~0.301 mg/L,DEA 0.005~0.011 mg/L,DIA 0.006~0.276 mg/L,ATZ 0.005~0.012 mg/L。  相似文献   

11.
建立了尿中除草剂莠去津(ATRZ)代谢物去乙基莠去津(DEA)、去异丙基莠去津(DIA)及去乙基去异丙基莠去津(DDA)的分析方法.尿样加入内标2-氨基-4-甲氧基-6-甲基-1,3,5-三氮嗪(AMMT),碱化后用高极性GDX501大孔树脂吸附、乙酸乙酯洗脱进行固相萃取,萃取物在乙腈溶剂中用N-甲基-N-特丁二甲硅烷...  相似文献   

12.
This paper reports the results of a laboratory study aimed at defining the leaching potential of the following pesticides and respective metabolites belonging to the families of N-methylcarbamates and triazines: benfuracarb (BF), carbofuran (CF), 3-keto-carbofuran (3KC) and 3-hydroxy-carbofuran (3HC), atrazine (ATR), simazine (SIM), terbuthylazine (TER), deethylatrazine (DEA), deisopropylatrazine (DIA) and desethylterbuthylazine (DET).All tested compounds, but BF, are very mobile in soil. Triazines exhibited a relatively high persistence, especially DEA, with a DT50 of 72 days. On the contrary, all the tested carbamates resulted easily degradable in soil with a partial exception represented by CF, with a DT50 of 12 days.The GUS indices show high leaching potentials for all the tested triazines and CF. The GUS index of 3KC lies in the typical area of transient compounds; those of BF and 3HC clearly exhibited a non-leaching behaviour.In the leachate corresponding to the BF column, the parent compound was found at low concentration while its main metabolite, CF, reached much higher values. Also, when applied as parent compound, CF was determined at high values, whereas its metabolites 3KC and 3HC were never detected in the leachates. As to triazines, in the ATR column, the parent compound was found at high levels in the leachate, where DEA exhibited values more than 4 times higher than DIA. In the SIM column DIA reached levels 8-fold higher than those in the ATR column. TER occurred at levels close to that of ATR in the respective leachate; DET was found at high levels whereas DIA was not detectable.  相似文献   

13.
A multi-residue analytical method has been developed for the determination of various classes of selected endocrine disruptors. This method allows the simultaneous extraction and quantification of different estrogens (estradiol, estrone, estriol, estradiol-17-glucuronide, estradiol diacetate, estrone-3-sulfate, ethynyl estradiol and diethylstilbestrol), pesticides (atrazine, simazine, desethylatrazine, isoproturon and diuron), and bisphenol A in natural waters. In the method developed, 500 ml of water are preconcentrated on LiChrolut RP-18 cartridges. Further analysis is carried out by liquid chromatography-mass spectrometry (LC-MS) using atmospheric pressure chemical ionisation (APCI) in the positive ion mode for determination of pesticides and electrospray in the negative ionisation mode for determination of estrogens and bisphenol A. Recoveries for most compounds were between 90 and 119%, except for bisphenol A (81%) and diethylstilbestrol (70%), with relative standard deviations below 20%. Limits of detection ranged between 2 and 15 ng/l. The method was used to study the occurrence of the selected pollutants in surface and groundwater used for abstraction of drinking water in a waterworks and to evaluate the removal efficiency of the different water treatments applied. Water samples from the river, the aquifer, and after each treatment stage (sand filtration, ozonation, activated carbon filtration and post-chlorination) were taken monthly from February to August of 2002. The presence in river water of atrazine, simazine, diuron and bisphenol A were relatively frequent at concentrations usually below 0.1 microg/l. Lower levels, below 0.02 microg/l, were usual for isoproturon. Estrone-3-sulfate and estrone were detected occasionally in the river. Most of the compounds were completely removed during the water treatment, especially after activated carbon filtration.  相似文献   

14.
A method was developed to determine simazine, atrazine and their metabolite, 2-chloro-4,6-diamino-1,3,5-triazine, in urine. The presence of these herbicides in urine may reflect possible exposure to pesticides. Sample preparation involved protein precipitation and solid-phase extraction. The samples were analyzed by high-performance liquid chromatography-mass spectrometry. The detection limits were 0.4 microg/l and the analytes have a linear response in the interval 6-800 microg/l. The precision of the method was reflected in the RSD of < 2.4% for the herbicides studied. Based on the detectable herbicide levels from spiked urine samples collected from unexposed volunteers, this method can be used to determine the low levels necessary for establishing reference values of the selected herbicides and the metabolite.  相似文献   

15.
A method is developed for the determination of polar pesticides and their transformation products [atrazine, deethylatrazine, deisopropylatrazine, hydroxyatrazine, diuron, 3,4-dichlorophenylmethylurea, 3,4-dichlorophenylurea (DPU), monuron, bentazone, anthranil-isopropylamide, chloridazon, metolachlor] in surface, estuarine and sea water samples at the low ng/l level. Solid-phase extraction is combined off-line with column liquid chromatography-electrospray ionization tandem mass spectrometric detection (LC-ESI-MS-MS). The applicability of two solid-phase materials, i.e., LiChrolut EN cartridges and graphitized carbon black extraction disks, is evaluated. The influence of the organic solvent used in gradient LC, as well as the amount of co-extracted humic material on the ESI process is studied. The eluotropic strength of the organic solvent was found to have a distinct effect on the sensitivity of ESI-MS if coupled with LC gradient separations. Methanol gave much better results than acetonitrile and phenylurea compounds are more susceptible to solvent changes than triazines. Co-extracted humic material causes signal suppression in ESI-MS-MS detection. The degree of suppression depends upon the sample pH and the nature of the samples, i.e., surface or estuarine water. Detection limits in LC-ESI-MS-MS ranged from 0.2 to 2 ng/l, with the exception of DPU (8 ng/l). The applicability of the procedure was demonstrated by analyzing surface and estuarine water.  相似文献   

16.
A method has been developed for the simultaneous determination of antifouling pesticides and some of their degradation products, e.g. dichlofluanid, diuron, demethyldiuron, 1-(3,4-dichlorophenyl)urea, sea-nine, Irgarol 1051 and one of its metabolites (2-methylthio-4-tert-butylamino-s-triazine) in marine sediments. The determination of these compounds in sediment samples was performed by means of methanolic ultrasonic extraction then clean-up on an Isolute ENV+ solid phase extraction (SPE) cartridge. The resulting extract was then analyzed by reversed-phase high-performance liquid chromatography coupled with atmospheric-pressure chemical-ionization mass spectrometry in negative and positive ion modes (HPLC-APCI-MS). Recovery ranged from 54-109% for the antifouling agents and their degradation products. The determination limits for the different compounds varied between 0.2 and 1.6 microg kg(-1) dry sediment. The analytical procedure was successfully applied to the determination of these pesticides and their degradation products in marine sediment samples from different marinas of the Catalan coast. The compounds detected were: diuron, dichlofluanid, demethyldiuron, sea-nine, and Irgarol 1051. The highest concentrations were those of diuron and Irgarol 1051--136 and 88 microg kg(-1), respectively.  相似文献   

17.
Abstract

An automated on-line solid phase extraction procedure followed by liquid chromatography with diode array detection was investigated for the determination of different classes of pesticides in water samples containing varied amount of humic substances. The different pesticides used were: carbendazin, carbofuran, atrazine, diuron, propanil, molinate, alachlor, parathion-ethyl, diazinon, trifluralin and the degradation products deisopropylatrazine and deethylatrazine. Humic substances extracted from a Brazilian sediment were used from 5 to 80 mg/l and their influence on recoveries was evaluated in neutral and acidic media. Recoveries higher than 70% were obtained for all the pesticides, from the preconcentration of 75 ml of aqueous sample fortified at 2 ng/ml using precolumns packed with PLRP-S. Good recoveries were obtained at neutral pH for most of the analytes up to 40 mg/l of humic acid. Only at 80 mg/l the recoveries were significantly affected, both at acidic and neutral pH. The method was applied to the determination of pesticides in river water spiked at 0.1 to 1 ng/ml. Detection limits obtained for water containing 10 mg/l of humic acid were between 0.05 and 0.3 ng/ml.  相似文献   

18.
A rapid multiresidue method for the analysis of more than 40 herbicides (such as simazine, terbuthylazine and diuron) in waters has been developed and validated by ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC/MS/MS). Prior to chromatographic determination, the samples were extracted using a solid-phase extraction procedure. The analysis was performed on an Acquity UPLC BEH C(18) column using a gradient elution profile and a mobile phase consisting of methanol and an aqueous solution of formic acid (0.01%). Other chromatographic and MS/MS parameters were optimised in order to improve selectivity and sensitivity of the analytes. The analytes were detected using electrospray ionisation (ESI)-MS/MS in positive ion mode with multiple reaction monitoring (MRM), optimising parameters such as voltage cone, capillary voltage, source and desolvation temperature, and desolvation and cone gas flow. The optimised method provides a rapid separation (less than 10 min) of the selected herbicides in the assayed matrices, and it was validated by the analysis of spiked blank matrix samples. Good linearity was obtained and the repeatability of the method was less than 20% for the lowest calibration point. The limits of detection ranged from 0.002 to 0.02 microg/L, and the limits of quantification from 0.005 to 0.05 microg/L, which were below the values specified by the European Union. Finally, the method was successfully applied to real environmental samples from Andalusia (southern Spain). Terbuthylazine, simazine, atrazine desisopropyl and desethyl terbuthylazine were the herbicides most frequently found in water samples.  相似文献   

19.
A novel analytical approach has been developed and evaluated for the quantitative analysis of a selected group of widely used pesticides (dimethoate, simazine, atrazine, diuron, terbuthylazine, methyl-parathion, methyl-pirimiphos, endosulfan I, endosulfan II, endosulfan sulphate, cypermethrin and deltamethrin), which can be found at trace levels in olive oil and olives. The proposed methodology is based on matrix solid-phase dispersion (MSPD), (with a preliminary liquid-liquid extraction in olive oil samples) using aminopropyl as sorbent material with a clean-up performed in the elution step with Florisil, followed by mass spectrometric identification and quantitation of the selected pesticides using both gas chromatography-mass spectrometry (GC-MS) in selected ion monitoring (SIM) mode and liquid chromatography tandem mass spectrometry (LC-MS-MS) in positive ionization mode. The recoveries obtained (with mean values between 85 and 115% (obtained at different fortification levels) with RSD values below 10% in most cases, confirm the usefulness of the proposed methodology for the analyses of these kind of complex samples with a high fat content. Moreover, the obtained detection limits, which were below 5 microg kg(-1) by LC-MS analyses and ranged from 10 to 60 microg kg(-1) by GC-MS meet the requirements established by the olive oil pesticide regulatory programs. The method was satisfactorily applied to different olives and olive oil samples.  相似文献   

20.
In this work, on-line preconcentration strategies were investigated for the multi-residue analysis of pesticides in drinking water and vegetables using micellar electrokinetic chromatography. Among the on-line strategies, sweeping and stacking with reverse migration of micelles (SRMM), with and without the insertion of a plug of water before sample injection, were contrasted. A new version of SRMM was also introduced. The modification consisted of momentarily applying a positive voltage at the inlet vial right after sample has been injected, increasing the efficiency by which the analytes are captured. Nine pesticides from different classes, carbendazim (benzimidazole), simazine, atrazine, propazine and ametryn (triazine), diuron and linuron (urea), carbaryl and propoxur (carbamate), were baseline separated in less than 6 min with a electrolyte composed of 20 mmol l(-1) phosphate buffer at pH 2.5, containing 25 mmol l(-1) sodium dodecyl sulfate and 10% methanol. Limits of detection (LODs) in the order of 2-46 microg l(-1) for the pesticides under investigation were obtained solely using the on-line strategies. Enrichment factors of 3-18-fold were obtained. These factors were computed as the improvement of the concentration LODs with respect to the reference condition (injection of 10 s at 2.5 kPa pressure). The proposed methodologies were applied to the analysis of pesticides in complex matrices such as carrot extracts where the detection of 2.5 microg l(-1) was illustrated. By combining off-line solid-phase extraction and the proposed on-line strategies, the detection of pesticides in drinking water at the 0.1 microg l(-1) level was conceived.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号